Translations
a translation alters a graph by altering its position shape , and/or \qquad orientation

Afranslativis a type of transformation that alters the position Of a graph. The shape and orientation do not change.

Example 1
Triangle ABC has undergone a translation 5 units to the right and 1 unit down.

We can express this translation in mapping notation as follows.

$$
(x, y) \rightarrow(x+5, y-1)
$$

TR-NasLATED

B $(-3,2)$ $\frac{\text { Po rats }}{(-4,5) \rightarrow(-4+5,5-1)}=(1,4)=A^{1}$

$$
(2,1)
$$

$$
C(-1,3)
$$

$$
(4,2)
$$

* If a point moose.

Practice Questions

- RIGHT/LEFT: x-coordinate changes
- up/Dowa y - coordinate

Graph the image of the figure using the transformation given. changes
a) graph the image b) write the mapping

C Graph the image of the figure using the transformation given.
translation: $(x, y) \rightarrow(x \lessdot 6, y+1)$

$$
\longrightarrow x+6
$$

Describe a rule for the following translation using mapping notation.
mapping n_{0} tation:

$$
(x, y) \rightarrow(x-5, y-1)
$$

Vertical Shifts (Translations)
Graph the function $y=x\left(2 y=x^{2}+3 \quad y=x^{2}-4\right.$ on the same graph. What do you notice?

$y=x^{2}$ x	$y=x^{2} 73$	$y=x^{2}-4$		
x	y	x	y	x
-2	4	-2	7	-2
-1	1	-2	0	
0	0	-1	4	-1
1	2	0	3	0
2	4	1	4	1
3	9	2	7	2

Graph the function $y=|x| x=|x|-1 y=|x|+2$ on the same graph.
What do you notice?

$$
\left\{y = | x | \text { oneans } \left\{\begin{array}{l}
y=x \text { if } x \geqslant 0 \\
y=-x \text { if } x<0
\end{array}\right.\right.
$$

$$
y=|x| \quad y=|x|-1
$$

x	y
-2	2
-1	1
0	0
1	1
2	2

x	y
-2	1
-1	0
0	-1
1	0
2	1

$$
\begin{gathered}
y=|x|+2 \\
x \\
\hline-2 \\
-1 \\
-1 \\
0 \\
1
\end{gathered}
$$

In general $y+k=f(x)$ or $y=(f(x))+k$ represents a vertical translation of the graph of the function $y=f(x)$. If $k>0$, then the graph is translated k units up. If $k<0$, then the graph is translated $|k|$ units down.

Horizontal Shifts (Translations) parabola.
Graph the function $y=x=(x-3)^{2}, y=(x+4)^{2}$ on the same graph. What do you notice?

$$
y=(x+4)^{2}
$$

x	y
-6	4
-5	1
-4	0
-3	1
-2	4

Graph the function $y=|x|, y=|x+1|, y=|x-2|$ on the same graph.
What do you notice?

$$
\begin{aligned}
& y=|x+1| \quad y=|x-2| \\
& x \mid y \\
& -2 \\
& -1 \\
& 0 \\
& 0 \\
& 1 \\
& 1 \\
& 2
\end{aligned} 1
$$

In general $y=f(x-h)$ represents a horizontal translation of the graph of the function $y=f(x)$. If $h>0$, then the graph is translated h units to the right. If $h<0$, then the graph is translated $|h|$ units to the left.

Example 2

$$
\begin{array}{ll}
y=|x+1| & \\
=|x--1| & \\
& h>1 \rightarrow \text { move RIGHT } \\
& h<1 \rightarrow \text { move LEFT }
\end{array}
$$

Given the graph of $y=f(x)$ sketch the graph of the transformed function $y=f(x-2)+\underset{\sim}{1}$. vertical \rightarrow up 1
horizontal \rightarrow RIGHT 2

summary
$y=f(x$
$-h)$

$$
\begin{aligned}
& h)+K_{\text {Z }} \text { vertical } \\
& \uparrow_{\text {horizontal }}
\end{aligned}
$$

