
Combining Transformations

Graph the function (x) = (x). Apply the following transformations in the order they are given. After each step, use mapping notation to describe the transformation from the original function.

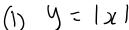
- A vertical stretch by a factor of 3.
- A horizontal stretch by a factor of 2.

step 0 : base function

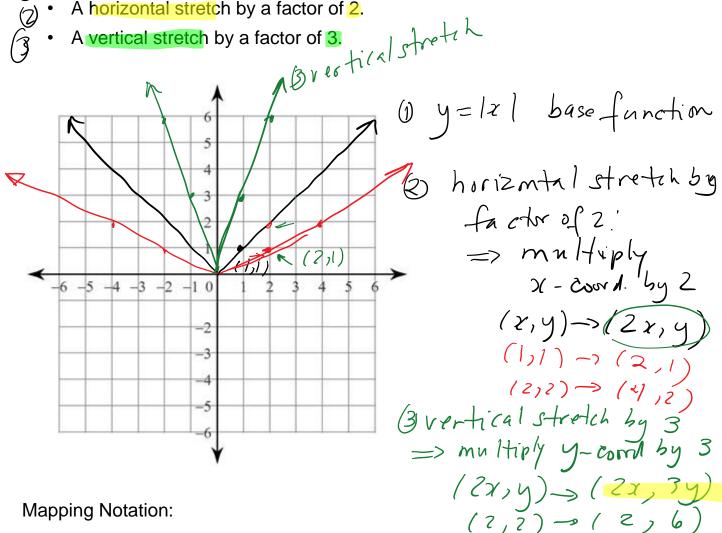
y = 1x1

step@ vertical streach hy 3, so 9=3 $(x,y) \rightarrow (x,3,y)$ step & horizontal stretch by 2, so b= === $(x,3y) \rightarrow (2x,3y)$

Mapping Notation:


$$(x,y) \rightarrow (2x, 3y)$$

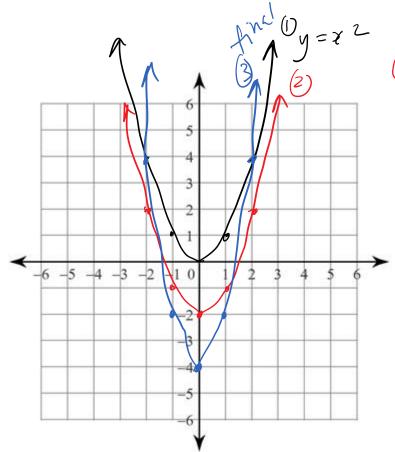
= |x|. Apply the following transformations in the order they


Apply the following transformations in the order they
$$\int \frac{1}{3} \ln x \int \frac{1}{3} \ln x \int$$

Graph the function

are given. After each step, use mapping notation to describe the transformation from the original function.

- A horizontal stretch by a factor of 2.
 - A vertical stretch by a factor of 3.


Mapping Notation:

$$(x,y) \rightarrow (2x,3y)$$

Did the order in which you performed the stretches change the resulting image? $\mathcal{N}_{\mathcal{O}}$ $= x^2$. Apply the following transformations in the order they are given. After each step, use mapping notation to describe the transformation from the original function.

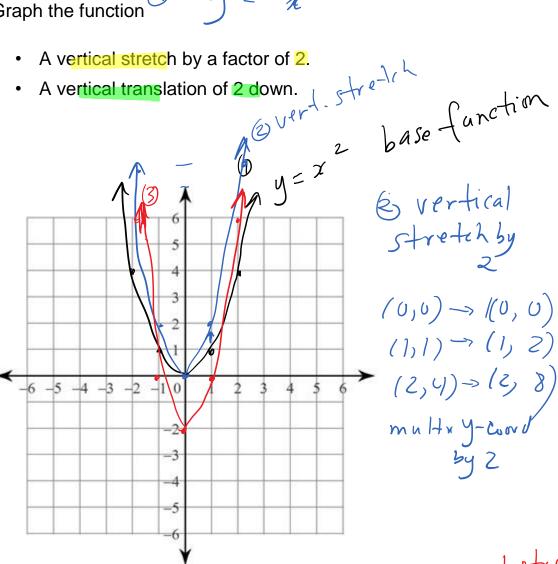
Graph the function \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

- A vertical translation of 2 down.
- A vertical stretch by a factor of 2.

Mapping Notation:

② vertical translation $(x,y) \to (x,y-2) \text{ (3 vertical stretch } (0,-2) \\ (0,-2) \to (0,-4) \\ (1,-1) \to (1,-2) \\ (2,2) \to (2,4) \\ \text{mult. y-could by 2}$

n: $(x,y) \longrightarrow (x, 2(y-2))$ $(x,y) \longrightarrow (x, 2y-4)$


 $=x^2$. Apply the following transformations in the order they are given. After each step, use mapping notation to describe the transformation from the original function.

Graph the function $\mathcal{O} = \mathcal{X}^{2}$

A vertical stretch by a factor of 2.

A vertical translation of 2 down.

& vertical (3) Vert. Stretch by translation 2 Down

 $(0,0) \rightarrow (0,0) \longrightarrow (0,-2)$

(1,1) -> (1, 2) -> (1, 0) (2,4) -> (2, 8) -> (2, 6) multiple y-coord

Mapping Notation:

$$(\chi, y) \rightarrow (\chi)$$

vert. stretch

$$(x, y) \rightarrow (x)$$
 $(x, y) \rightarrow (x)$

which you performed the stretches change the resulting image?

Did the order in which you performed the stretches change the resulting image?

Jes 7

When applying several transformations to a function, <u>STRETCHES</u> must be done before *** A *** C *** A

A function written in this form has undergone the following transformation:

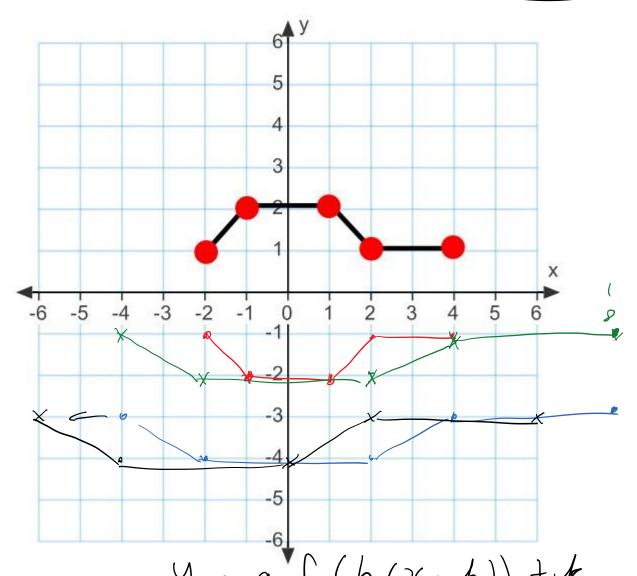
5 a: vertical stretch by a factor of 2 1t. your If a < 0, multiple X-axis Stretch by a factor of

161 x mult. x-cord

If b<0,

161 REFLECT in y-axis

The function y = f(x) is transformed to the function g(x) = -2f(2x + 6) - 1. Describe the transformations that were applied to y = f(x).


Example 2

A key point (-1, 2) lies on the graph y = f(x). What is its image point under the following transformation of the graph of y = f(x)?

$$y - 1 = \frac{1}{2}f(-\frac{1}{3}x - 1)$$

Example 3

The graph of y = f(x) is given. Sketch the graph of $f(x) + 2 = -f(\frac{1}{2}(x+2))$.

y = a f(b(x-h)) + k $y + 2 = -f(\frac{1}{2}(x+2))$

About $y = -f((\frac{1}{2})(x - (-3)))_{+} - 2$ horizont stretch by

horizont factor of 2t, by 2horizont 2t, by 2Number 2t