Methods for solving a Quadratic Equation:

- Graphing Parts of a Radical $3 \sqrt{5}$
- Factoring

- Square Root Principle \leftarrow

- Quadratic Formula

What is a prime number?

$$
\text { (but } 1 \text { is not prime!) }
$$

Write the prime numbers under 50 here:

$$
2,3,5,7,11,13,
$$

To take the square root of a number, we need to write the prime factorization of it (i.e., break it down into prime number factors).

FACTOR TREE METHOD

negative number

$$
\Rightarrow \text { No Solution! }
$$

$$
\begin{aligned}
& \sqrt{2 \cdot 2}=\sqrt{4} \\
& \sqrt{(-2)(-2)}=\sqrt{4}
\end{aligned}
$$

Find the prime factorization of:
a) 48
(2) (2)
b) $38=(2) \times(19)$
c) $88=(2) \mathbf{x} y \mathbf{y}$
$=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$

- Write the given number to begin.
- Choose two numbers which multiply to the given number. These two numbers will form your first two branches.
- If the number is prime, circle it. You will not need to do anything else to this number.
- If the number is composite, find two numbers which multiply to the number. These new numbers will form new branches.
- Continue until all branches have ended in prime numbers.

EXAMPLE: FIND THE PRIME FACTORIZATION OF 120.

When taking the square root of a number, write its prime factorization. "Twins" can "escape" from square root jail but only 1 twin makes it out alive!

Find the square root of each number from above:
b) $\sqrt{38}=\sqrt{2.19}$
If no twins,
multiply the
c) $\sqrt{88}$
a) $\sqrt{48}=\frac{1}{i=2 \cdot 2 \cdot(2 \cdot 2) \cdot 3}$
$=2 \cdot 2 \sqrt{3}$
$=2 \cdot 2 \sqrt{3}$
$=4 \sqrt{3}$
numbers bock!
$=\sqrt{38}$
.

Solving Quadratic Equations by the Square Root Principle

$$
\sqrt{16}=\sqrt{4 \cdot 4}=y
$$

$$
\begin{aligned}
& \text { (1) } \\
& \sqrt{x^{2}}=\sqrt{25} \\
& x=5 \text { because } 5.5=25 \\
& x=-5 \text { because }(-5)(-5)=25
\end{aligned}
$$

When $b=0$, the quadratic equation $a x^{2}+b x+c=0$ becomes $a x^{2}+c=0$. If $x= \pm 5$ this equation has a solution, it can be solved by the SQUARE ROOT PRINCIPLE.

$$
\begin{array}{ll}
\text { Use this method when } \begin{array}{l}
x^{2}=\# \\
\\
\\
\hline \text { Souare Root Principle. }
\end{array}\left(\begin{array}{l}
1)^{2}=\#
\end{array}\right.
\end{array}
$$

Example 1: Solved each equation by the Square Root Principle.
a. $\quad 3 x^{2}-7=8 \quad$ Isolate the square
b. $\quad \sqrt{(x+3)^{2}}=\sqrt{20}$

$+7+7$	
$\frac{3 x^{2}}{3}$	$=\frac{15}{3}$
$\sqrt[3]{x^{2}}$	$=\sqrt{5}$
x	$= \pm \sqrt{5}$

c.

e) $\sqrt{(x+2)^{2}}=\sqrt{64}$
$x+2= \pm 8$
$-2=-2$

Assignment: Square Root Principle Worksheet.

