5.1 - Modelling Polynomials

Focus: Learn vocabulary associated with polynomials and represent and identify polynomials using models

Recall: Last year when we added and subtracted integers, we used integer chips.

In Arithmetic we used 10 blocks to model whole numbers.

Ex. 1: The following tiles represent what expression?

1

Do the 'Investigate'

Investigate

2

Use algebra tiles.

➤ Model each expression. Sketch the tiles. How do you know which tiles to use? How do you know how many of each tile to use?

 $x^2 + x - 3$

- $2x^{2} + 3x$ $-2x^{2} 3x + 1$ -3x + 3 3x + 3
- ➤ Write your own expression. Have your partner model it with tiles. Model your partner's expression with tiles.

We must be able to identify vocabulary associated with Polynomials.

Let us examine the expression, $2x^2 - 4x + 12$.

1. What is a variable?

(an unknown quantity)

2. What is a Coefficient?

number that multiplies the variable Ex: in 2x2 coeffint -4 in -4x

3. What is a Constant?

number that doesn't charge (with an x).

Ex: 12

2

4. What are terms?

Ex: 222, -4x, 12

4. What are terms?

5. What is a Polynomial?

6. What is the degree of the polynomial?

highest exponent

Ex. 3: Model the following polynomials using algebra tiles. State the degree and classify the polynomial (monomial, binomial, trinomial).

a) 4x + 3

classification: min mia

c) $5a - 4a^2 - 3$ -4a2+5a-3 degree: 2
classification: 4rihmial

Assignment:

Sec 5.1, p. 214: 4, 5abc,

9 (make a chart: polynomial, coefficients, variable, degree, constant), 10, 11ace (sketch), 12, 13

15, 16, 18