1 Modelling Polynomials

5.1 - Modelling Polynomials

Focus: Learn vocabulary associated with polynomials and represent and identify polynomials using models
Recall: Last year when we added and subtracted integers, we used integer chips.

In Arithmetic we used 10 blocks to model whole numbers.

To model Polynomials we will use algebra tiles.
Yellow represents positive tiles.

Red represents negative tiles.

Ex. 1: The following tiles represent what expression?

Do the 'Investigate'

We must be able to identify vocabulary associated with Polynomials.
Let us examine the expression, $2 x^{2}-4 x+12$.

1. What is a variable?
x
(an untanou quantity)
2. What is a Coefficient?

number that multiplies the variable

Ex: in $\frac{2}{4} x^{2}$ coeffient -4 in $-4 x$
3. What is a Constant?

> number that doesnt change (with an x).

Ex: 12

$$
2 x^{(2)}-4 x^{1}+12
$$

4. What are terms?

$$
E x: 2 x^{2},-4 x, 12
$$

4. What are terms?

$$
\text { Ex: } 2 x^{2},-4 x, 12
$$

5. What is a Polynomial?

$$
\begin{array}{r}
\text { sum of } 1 \text { or more terms } \\
E x .
\end{array}
$$

6. What is the degree of the polynomial?
highest exponent

Ex. 3: Model the following polynomials using algebra tiles. State the degree and classify the polynomial (monomial, binomial, trinomial).
a) $4 x^{\frac{1}{1}}+3$ degree: 1
classification: \qquad
binomial
b) $-5 c^{1}$

\qquad
c) $5 a-4 a^{2}-3$

$$
-4 a^{2}+5 a-3
$$

degree: 2 classification: frihmial

Assignment:

Sec 5.1, p. 214:
 4, 5abc,

筑
9 (make a chart: polynomial, coefficients, variable, degree, constant), 10, 11 ace (sketch), 12,13

$15,16,18$

