r solve move than equation

PRE-CALCULUS 11 Chapters 8-9-Day 2: SOLVING SYSTEMS OF EQUATIONS ALGEBRAICALLY (Part 1)
SOLVING SYSTEMS ALGEBRAICALLY

The solution of a system of equations can be solved:

- algebraically - either:
- with the substitution method, or
o with the elimination method.

SOLVING SYSTEMS OF EQUATIONS WITH THE SUBSTITUTION METHOD

To solve a system of equations algebraically using The Substitution Method:

1. Solve Re of the equations for one of the variables; choose carefully.
2. Take the expression equal to that variable and substitute it into the other equation; the result should be a single equation with a single variable.
3. Solve this equation; find the roots - the values of this first variable.
4. Substitute each of these roots into an equation with both variables - one at a time; each of these roots will produce an equation with the second variable.
5. Solve these equations; find the value of the second variable.

Example 1: Solve this system of equations BY SUBSTITUTION.
$x^{2}-y=0$ and $x-y=-2$
Steps: I solate

- Solve for y in the linear function
- Substitute expression for y into the quadratic function.
- Solve this quadratic equation.
- Substitute each of these x-values Into the linear function to find the Corresponding y-values.

$$
\begin{aligned}
& x^{2}-y=0 \quad x-y=-2 \\
& x^{2}-1(x+2)=0 \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \\
& x=2 \text { or } x=-1
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Easier to use } \begin{array}{l}
y=x+2 \\
\text { If } x=2,
\end{array} & \text { If } x=-1 \\
y=2+2=4 & y=-1+2=1 \\
\text { Solth }\{(2,4), & (-1,1)\}
\end{array}
$$

Could this example be solved with the substitution method using different decisions?

Example 2: Solve using The Substitution Method. Find the exact values.

$$
(0) y=x^{2}+2 \text { and } \begin{aligned}
& (2) \\
& 2 x-y+1=0 \\
& \\
& \text { Rewrite (2) } \Rightarrow \text { (3) } y=2 x+1
\end{aligned}
$$

Substitute (3) into (1).

$$
y=x^{2}+2
$$

$$
2 x+1=x^{2}+2
$$

$$
\begin{array}{ll}
2 x+1 & -2 x-1 \\
-2 x-1,
\end{array}
$$

$$
x^{2}-2 x+1=0
$$

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

$$
(x-1)^{2}=0
$$

$$
(x-1)(x-1)=0
$$

$$
x=1
$$

Find corr y :

$$
\begin{aligned}
& y=2 x+1 \\
&=2(1)+1=3 \\
& \text { Solan: }\{(1,3)\}
\end{aligned}
$$

Assignment: Sec 8.2, p. 451 \#1-3, 8, 13, 14

Solve by SUBSTITUTION:
a) $y=x^{2}-4 x+2$ and
b) $y=x^{2}-4 x+2$ and
$3 x+2 y-11=0$
$x-2 y-8=0$
(Just in case: quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$)

Ans: a) $\left\{(-1,7),\left(\frac{7}{2}, \frac{1}{4}\right)\right\} \quad$ b) no solution
b) $y=(x+1)^{2}-4$ and $y=-2 x^{2}+7$ (challenge) REMOVED BECAUSE very long answer (Ms. Chang's notes)

