
Math 11/12: Financial Literacy

Day 2: Compound Interest: Future Value

COMPOUND INTEREST

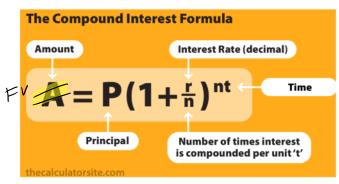
With simple interest, the principal at the beginning of the second year is the $\frac{Same}{ame}$ as the principal at the beginning of the first year. In compound interest, the interest earned during the first year is $\frac{added}{ame}$ to the original principal to form a new LARGER principal.

Simple vs. Compound interest?! Say a bank offers you two types of savings bonds:

- Simple Interest bond paying 6% per year. r = 0.06
- Compound Interest bond paying 6% per year compounded annually

Complete the following table to see which is better:

	YEAR	Principal	Simple	Ending	Principal	Compound	Ending			
		(\$)	Interest	Simple	(\$)	Interest	Compound			
I= Prt =(2000)(0.06) =\$120	(4)		(\$)	Interest		(\$)	Interest	I=Prt		
				Value (\$)			Value (\$)			
	1	2,000	120	2120	2,000	120	2120	=(2120)(0.06)/1 =\$127.20		
= 312	2	20 ⁰⁰	120	2240	2120	127.20	2247	- \$127.20		
	3			2,360	2247	134.23	2332.03			
	4	•	4	(2,480)	2382.03	142.92	2,529.9	•		
Which type of bond grows more quickly?										
Which type of bond grows more quickly? Ms. Kamber										
Ms. Kamber										


Compound interest
(exponential!)

Simple interest
(linear)

Years

- Compound Interest: The interest that is earned on both the __princips| and the accumulated __interest___
- Future Value (FV) or Accumulated Amount (A): How much an investment is worth after a certain amount of time

FORMULAE:

I = FV - P

n = # of ______ paunding ____ periods per year

n, Compounding Periods per year

n is the number of paid periods in a year,

(i.e., how often they will pay YOU the interest!)

, , ,	,
How often is the interest calculated	n
("compounded") per year?	
<mark>annu</mark> ally	1
semi-annually	2
quarterly	4
monthly	12
weekly	52
bi-weekly	~6
daily	365

56-2-20

Ms. Kamber

Example 1: Determine the future value if you were to have invested \$7,800 at 6.75% compounded annually for 15 years.

$$P = 7,800$$

 $r = 6.759 = 0.0675$
 $t = 15$ years
 $n = 1$

How much interest was earned (the compounded interest)?

Example 2: Ishaan invested \$23,000 inheritance in an account that earns 13.6%, compounded semi-annually. The interest rate is fixed for 10 years. Matt plans to use the money for a down payment on a condo.

a) What is the future value of the investment after 10 years?

$$f = 23,000$$
 $r = 13.65 = 0.136$
 $FV = P(1 + \frac{r}{n})$
 $h = 2$
 $f = 23000 (1 + 0.14)$

$$FV = P(1 + \frac{r}{n})^{nt}$$

$$= 23000 (1 + 0.136)^{2(10)}$$

$$= 23000 (1.068)^{20}$$

$$FV. = $85,733.96$$

b) If the investment had earned simple interest, would the relationship between the principal and the future value have been the same? Explain.

$$I = Prt$$

$$= (23000)(0.136)(10)$$

$$I = (31,280)$$

$$= (7 - P + I) = 2800 + 31,280$$

$$= (554,280)$$

Ms. Kamber

Rule of 72: A simple for estimating the doubling time of an investment.

Number of years to **Double** = $\frac{72}{100}$ ÷ Interest Rate as %

not a decimal!

This rule works best when interest is compounded a hnually

This rule works best when interest is compounded a hnwally

Example 3: Both Bob and Chris invested \$5,000 in separate accounts. Bob's earns 8%, compounded annually, while Chris' earns 9% compounded annually.

a) Estimate the doubling time for each.

Bobi # years & double = 72 = 9 years Chris:

years & double = 72

9

= 3 years

b) Does the Rule of 72 really work?!? Estimate the future value of an investment of \$5,000 that earns 8%, compounded annually, for 9, 18, and 27 years. How close are your estimates to the actual future values?

BOARDS

Ms. Kamber