2 Exploring Quadratic Functions

September 23, 2019 6:16 PM

Ch 3 Day 2: Properties of Graphs of Quadratic Functions PreCal 11 Today's vocab: vertex, axis of symmetry, maximum value, minimum value, horizontal distance, height, table of values, domain, range slope y-intercept x-intercept y-INTERCEPT: where the graph crosses the $4-ax^3$ (i.e., where x=0) x-INTERCEPT: where the graph crosses the $\sqrt{2-a}$ (i.e., where $\sqrt{y} = \sqrt{0}$)
The x-intercepts are also called the \sqrt{zeros} . the set of valid χ values for the graph DOMAIN: the set of valid ______ y values ____ for the graph RANGE: the minimum or maximum point, (x,y), on a parabola. VERTEX: The Vertex tells us a lot! It tells us the functions OPTIMUM value, y, + when it occurs; x. 1 (3,5) Vertex MINIMUM value: MAXIMUM value: 5 optimal occurs a+x=3 -1 AXIS of SYMMETRY (a vertical line): · divides the parabila occuration into 2 equal halves (mirror image) · Show with a dashed line MBF 3C Name: BLM 3.1.2 Date: Introducing... The Parabola! (Continued) Example 1: For the following parabolas, fill in the table which follows.

Parabola

How to find the equation of the AXIS of SYMMETRY

- ★ If you have the vertex, then (P. 9)

If you have the quadratic equation in standard form, $y = ax^2 + bx + c$, then $E x: y = 1x^2 + 3x - 10$ $x = -\frac{b}{2a} = -\frac{3}{2}$ $x = -\frac{b}{2a} = -\frac{3}{2}$ $x = -\frac{3}{2}$ $x = -\frac{3}{2}$

 \star If you have 2 x-intercepts (or $\frac{2}{2}$ points with the s $\frac{2m!}{2}$ $\frac{1}{2}$ -values), then take the

Example 3: Find the equation of the axis of symmetry for each quadratic function given the following:

- a) the vertex is (-2, 8)
- b) $y = -x^2 3x + 5$ **a = -1 b = -3** $2 = \frac{-b}{2a} = \frac{-(-3)}{2l-1} = \frac{3}{2} = \left(-\frac{3}{2}\right)$
- c) the x-intercepts of a quadratic are -4 and 6
 - take aug! $2 = \frac{9+6}{2} = \frac{2}{2} = 1$ X=1

Dram arrws!

Example 4: Sketch a parabola with:

- a) the vertex of (3,4) and zeros at 1 and 5
- b) a minimum value of -8, zeros at 2 and -2, and y-intercept of -8
- c) a zero at (1, 0), the vertex at (3, -4) and y-intercept of (0,5)
- d) the axis of symmetry of x = -2, optimal value of -3. This parabola has no zeros.

Day 2: p.1 do at least 4!

p.e

p.e

p.s