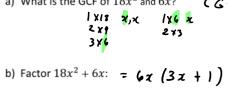
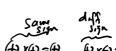

Factoring - Day 2: Factoring Polynomials

FACTORING POLYNOMIALS

"To factor" something means to write it as an equivalent product. For example, the factored form of 15 is (3)(5).

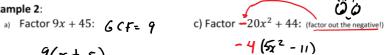

Your plan has been foiled


Greatest Common Factor:

Greatest Common Factor (GCF): ab + ac = a(b + c)Definition: the <u>| a ryest</u> factor <u>shared</u> by 2 or more <u>| +erms</u> factor <u>out the negative</u>, factor out the negative (e.g., -1)!

Example 1:

a) What is the GCF of $18x^2$ and 6x?



Example 2:

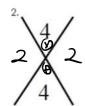
a) Factor
$$9x + 45$$
: 6 CF = 9

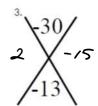
$$9(x+s)$$

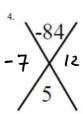
b) Factor
$$14x^2 - 35x$$
 G (F= 7γ)

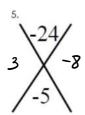
Review Simplifying Fractions

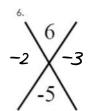
Example 3: Simplify the following:


a)
$$\frac{2}{8} \div z = \frac{1}{7}$$

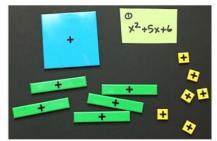

a)
$$\frac{2}{8} = \frac{2}{1} = \frac{1}{7}$$
 b) $\frac{6}{-8} = \frac{2}{7} = \frac{3}{7}$ c) $\frac{6}{-9} = \frac{2}{3}$


Sum & Product Puzzle: Set 1

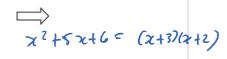

In each diagram below, write the two numbers on the sides of the "X" that are multiplied together to get the \underline{top} number of the "X," but added together to get the \underline{bottom} number of the "X,"

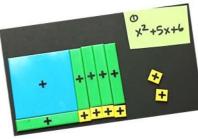


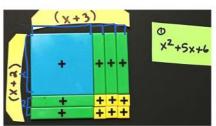




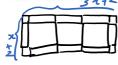
Factoring Polynomials of the form $ax^2 + bx + c$ with Algebra Tiles


Steps:

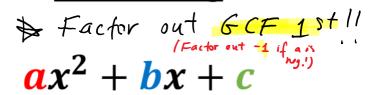

- 1. Lay out the polynomial with algebra tiles.
- 2. Arrange the tiles into a rectangle! Your rectangle will have:
 - the x^2 tile(s) in its upper left corner
 - the unit ("1") tiles in the lower right corner
- 3. Read the dimensions of your rectangle. These are the factors!

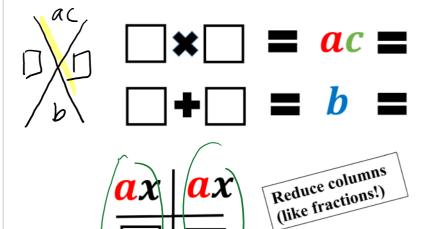

Example: Factor $x^2 + 5x + 6$ (from Scaffoldedmath.com)

Arrange into a rectangle!


Example 4: Use algebra tiles to factor. Draw the tiles to show your answer.

a) $x^2 + 5x + 4 = (x+1)(x+4)$ b) $3x^2 + 8x + 4 = (3x+2)(x+2)$



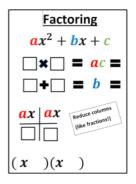


Factoring

(x)(x)

Factoring Trinomials of the form $ax^2 + bx + c$ using "Crosshairs" Method

Example 5: $4x^2 - 10x - 24$

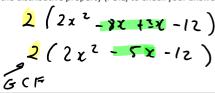

Step 1: Factor first: Is there a Greatest Common Factor (GCF) you can factor out from the 3 terms (other than 1)? If a is negative, factor out the negative!

 $G(f=2) \qquad 2(2x)^2 - 5x - 12)$

Step 2: Identify a, b, and c in (new) $ax^2 + bx + c$: Multiply a and c.

$$a = 2$$
 $b = -5$ $c = -12$ $a \times c = 2(-12)$ $= -29$

Step 3: Find $\frac{2}{2}$ numbers that multiply to ac and add to b. (Note: You may need to list the factors of ac and remember the **sign law** for multiplication.)


Step 4: Draw a "**crosshair**." In the top 2 boxes, write "ax". Note: Don't write the "square" (i.e., forget the exponent 2). In the bottom 2 boxes, write the numbers you found in Step 3.

$$2x$$
 $2x$ 3 -8

Step 5: Reduce each column. (This is sort of like what you do when you reduce fractions.) In this example, the 2 and 3 in the 1st column will not reduce but the 2 and -8 in the second column can reduce to 1 and -4, as shown.

Step 6: You've now got the answert the 1st column is a factor and the 2nd column is the other factor! $(2\chi + 3)(\chi - 4)$

Step 7. Check! Apply the distributive property (FOIL) to check your answer.

Ex. 6: Factor:
$$-2x^2 + 2x + 12$$

Step 1: Factor first: Is there a Greatest Common Factor (GCF) you can factor out from the 3 terms? If a is negative, factor out the negative!

Step 2: Identify a, b, and c in (new) $ax^2 + bx + c$. Multiply a and c.

$$a = 1$$
 $b = 1$ $c = -6$ $a \times c = -6$

Step 3: Find 2 numbers that multiply to ac

$$\sqrt{3} \times 2 = ac = 6$$

 $\sqrt{3} + 2 = b = 1$

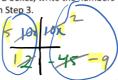
Step 4: Draw a "crosshair." In the top 2 boxes, write "ax". Note: Don't write the "square" (i.e., forget the exponent 2). In the bottom 2 boxes, write the numbers you found in Step 3.

$$\begin{pmatrix} x & x \\ -3 & 2 \end{pmatrix}$$

Step 5: Reduce each column (sort of like what you do when you reduce fractions.)

Step 6: You've now got the answer! The 1st column is a factor and the 2^{nd} column is the other factor!

Ex. 7: Factor: $(10x)^2 - 43x - 9$


Step 1: Factor first: Is there a Greatest Common Factor (GCF) you can factor out from the 3 terms? If *a* is *negative*, factor out the negative!

Step 2: Identify a, b, and c in (new) $ax^2 + bx + c$. Multiply a and c.

$$a = 10b = -43c = -9$$
 $a \times c = -90$

Step 3: Find 2 numbers that multiply to ac and add to b.

Step 4: Draw a "crosshair." In the top 2 boxes, write "ax". Note: Don't write the "square" (i.e., forget the exponent 2). In the bottom 2 boxes, write the numbers you found in Step 3.

Step 5: Reduce each column (sort of like what you do when you reduce fractions.)

Step 6: You've now got the answer! The 1st column is a factor and the 2nd column is the other factor! (5 x + 1) (2x - 9)

Step 7. Check! Apply the distributive property (FOIL) to check your answer.

Ex. 8: Factor: $x^2 - 8x + 12$

Step 1: Factor first: Is there a Greatest Common Factor (GCF) you can factor out from the 3 terms? If *a* is *negative*, factor out the negative!

nanci

Step 2: Identify a, b, and c in (new) $ax^2 + bx + c$. Multiply a and c.

$$a = b = b = c = 2$$
 $a \times c = 2$

Step 3: Find 2 numbers that multiply to ac and add to b.

$$(x - 2) = ac = 12$$

 $(x - 2) = b = -8$

Step 4: Draw a "crosshair." In the top 2 boxes, write "ax". Note: Don't write the square" (i.e., forget the exponent 2). In the bottom 2 boxes, write the numbers you found in Step 3.

Step 5: Reduce each column (sort of like what you do when you reduce fractions.)

Step 6: You've now got the answer! The 1st column is a factor and the 2nd column is the other factor! *Do you see a shortcut?!?*

$$(\chi - \zeta)(\chi - \zeta)$$

Step 7. Check your answer!

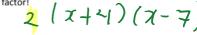
Ex. 9: Factor: $2x^2 - 6x - 56$

Step 1: Factor first: Is there a Greatest Common Factor (GCF) you can factor out from the 3 terms? If a is negative, factor out the negative!

 $(2(x^2-3x-27)$

Step 2: Identify a, b, and c in (new) $ax^2 + bx + c$. Multiply a and c.

$$a = 1$$
 $b = -3$ $c = -38$ $a \times c = -28$


Step 3: Find 2 numbers that **multiply to** *ac* and add to *b*.

Step 4: Draw a "crosshair." In the top 2 boxes, write "ax". Note: Don't write the "square" (i.e., forget the exponent 2). In the bottom 2 boxes, write the numbers you found in Step 3.

Step 5: Reduce each column (sort of like what you do when you reduce fractions.)

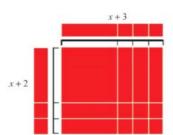
Step 6: You've now got the answer! The 1st column is a factor and the 2nd column is the other factor!

Step 7. Check! Apply the distributive property (FOIL) to check your answer

Do NOT PRINT:

Example 2:

- a) What is the GCF of $-6x^3y$, $12x^2y$, 3xy?
- b) Factor $-6x^3y 12x^2y + 3xy$.


Procedure

- (i) Select the tiles which represent the product, i.e., area.
- (ii) Make a rectangular array of the tiles by placing large square tiles in the upper left corner and the unit (1) tiles in the lower right corner.
- (iii) Read the dimensions, i.e., factors, of the completed rectangle.

Example 1: Factor $(x^2 + 5x + 6)$.

