INEQUALITIES

An inequality is a mathematical statement that compares values that may not be equal.

- < is the symbol for "is less than"
- > is the symbol for "is greater than"
- \leq is the symbol for "is less than or equal to"
- \geq is the symbol for "is greater than or equal to"

Investigate:

Write an inequality, e.g., $3<10$ or $59>-16$:

Multiply both sides by a negative number:

Did you need to change anything? If so, what?

$$
8<12
$$

$$
-8>-12
$$

The same rules for equations can be applied to inequalities with one exception!
When multiplying or dividing both sides of an inequality by negative number, the direction of the inequality symbol must be reversed.

To solve any inequality, find all the values of the variable that satisfies the inequality.

Example 1: Solve $7-2 x<1$ and graph its solution set.

$$
\begin{gathered}
\frac{-7}{\frac{-2 x}{-2}<\frac{-6}{-2}} \text { ®'' }^{\prime \prime} \\
x>3
\end{gathered}
$$

- Its graph is on a number line.

Example 2: Solve $5-3 x \geq 23$ and graph its solution set.

Example 3: Solve $3 x-20>-2 x$ and graph its solution set.

$x>4$

LINEAR INEQUALITIES IN TWO VARIABLES

To graph the solution of a linear inequality in $\mathbf{2}$ variables:

- Draw the boundary line:
- Change the inequality to " $=$ " and graph that line.
- Use a solid line if points on the boundary satisfy the inequality (ie., \leq or \geq). Use a dashed/broken line if points on the boundary do no satisfy the inequality (ie., <or >).

- Solution region: Determine the region with the points that satisfy the inequality.
- Choose a point on one side of the boundary and check if its coordinates satisfies the inequality. Trick: $(0,0)$ is an easy point to test!
- If the point satisfies the inequality (i.e, is TRUE), shade that region; otherwise, shade the other region.

Example 4: Draw the graph of $y>x+2$.

- Change inequality to ' $=$ '.

- Change inequality to ' $=$ '.
- Graph the boundary line.
- Using the inequality, test a point that's not on $\frac{1}{\rightarrow 1}$ the line. Trick: Test $(0,0)$!
- Solution region: If inequality is TRUE, shade side with the point tested. If FALSE, shade the other side!

$$
\begin{aligned}
& y=x+2 \\
& y=m x+6 \\
& m=\frac{1}{1}=\frac{11}{\rightarrow 1}
\end{aligned}
$$

For any inequality statement that is solved for y, the solution will include:

Example 5: Draw the graph of $y \leq-\frac{5}{2} x-1$.

$$
y-\operatorname{sit} . \quad b=-1
$$

$$
m=\frac{-5}{2}=\frac{15}{\rightarrow 2}
$$

$$
\text { Test }(0,0): 0 \leq-1
$$

FALSE

$$
\rightarrow \text { shade other } \begin{gathered}
\text { sole }
\end{gathered}
$$

To find x-intercept, let $y=0$ tue equals.

$$
2 x-3(0)=12
$$

To find x-intercept, lIft $y=04$ ane equals.

$$
\begin{gathered}
2 x-3(0)=12 \\
2 x=12 \\
x=6
\end{gathered}
$$

Tu find y-intercept) lit $x=0$ $2(0)-3 y=12$
$\begin{array}{cc}y=-4 \\ \text { Test }(0,0) . & 0-0<12\end{array}$

Example 7: Write the inequality for each graph.

$y=m x+b$
$m=\frac{3^{9}}{1-m}=3$
$y \geqslant 3 x-2$

Bob: jugging: $500 \mathrm{cal} / \mathrm{hr}$
walling: $300 \mathrm{cal} / \mathrm{hr}$ at least $\rightarrow \geqslant 3000 \mathrm{cal}$

$$
\text { Let } \begin{aligned}
x & =\text { jogging in hours } \\
y & =\text { walking in hows }
\end{aligned}
$$

$$
\begin{array}{rlrl}
500 x+300 y & \geqslant 3000 \\
x & \geqslant 0: 300 y & =300 \\
y & =10 \\
y & =0 & 500 x & =300 \\
& x & =6
\end{array}
$$

one possibility is
+2 hours of joggny

Assignment: Sec 9.1, p. 472 \#1-ac, 3-4ace, 8abc (graph by hand), 9, 13, 15

