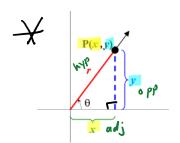
March 4, 2020 12:17 PM

Ch 2 - Day 3: TRIGONOMETRIC RATIOS OF ANY ANGLE (Part 1)

TRIGONOMETRIC RATIOS OF ANGLES IN STANDARD POSITION



Let P(x,y) represent any point on the terminal arm of the standard position angle θ .

Let r represent the distance from the vertex at (0,0) to P(x,y); r is always positive because it is a distance.

x, y, and r are the lengths of the sides from the right triangle formed in the diagram.

The Pythagorean Theorem gives the relationship between $x, y, \text{ and } r: x^2 + y^2 = r^2$

The old definitions for the sine, cosine, and tangent of an angle can be applied to angles in standard position using the right triangle in the diagram.

SOH CAHTOA

• The sine of angle
$$\theta$$
, $\sin \theta = \frac{y}{r}$

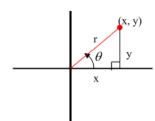
• The cosine of angle
$$\theta$$
, $\cos \theta = \frac{x}{r}$

• The tangent of angle
$$\theta$$
, $\tan \theta = \frac{y}{x}$

With these definitions, trigonometry is no longer limited to acute angles. Since \underline{x} and \underline{y} can be negative, so can the values of the trigonometric ratios.

Trig Ratios on the coordinate plane: Rotating a point around the coordinate plane creates angles in standard position. By dropping a perpendicular line from the point to the x-axis, a right triangle is created. Trigonometric ratios occur with respect to the reference angle.

Trig Ratios in Quadrant I:



$$\sin\theta = \frac{opp}{hyp} = \frac{y}{r}$$

$$\cos\theta = \frac{adj}{hy} = \frac{x}{hy}$$

$$hyp \quad \mathbf{r}$$

$$tan\theta = \frac{opp}{adi} = \frac{\mathbf{y}}{\mathbf{x}}$$

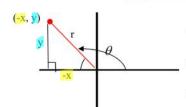
"r" is **positive** in all quadrants

since "x" and "y" are also positive in the first quadrant, all of the trig ratios in quadrant I are

The radius is always the hypotenuse!

OIL

Trig Ratios in Quadrant II:

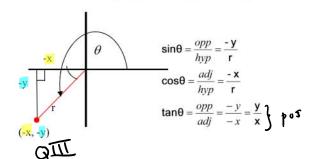


$$\sin\theta = \frac{opp}{hyp} = \frac{y}{r}$$

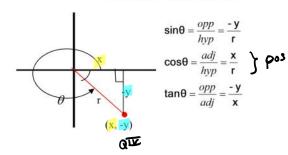
$$\cos\theta = \frac{adj}{hyp} = \frac{x}{r}$$

$$\tan\theta = \frac{opp}{adj} = \frac{y}{-x}$$

Trig Ratios in Quadrant III:



Trig Ratios in Quadrant IV:



Note:

- "r" is positive in all quadrants
- since "x" is negative in the second quadrant, all of the trig ratios that include "x" will be negative
- the only positive trig ratios in quadrant II are sinθ

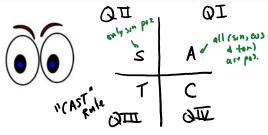
Note:

- "r" is positive in all quadrants
- since "x" and "y" are negative in the third quadrant, all but 2 of the trig ratios will be negative
- the only positive trig ratios in quadrant III are tanθ

Note:

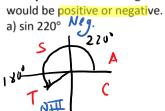
- "r" is positive in all quadrants
- since "y" is negative in the fourth quadrant, all of the trig ratios that include "y" will be negative
- the only positive trig ratios in quadrant IV are cosθ

Tricks to remember WHICH QUADRANTS have POSITIVE trig ratios:



"All Students Take Calculus"

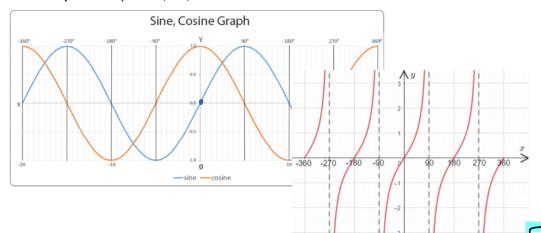
Example 1: Without using a calculator, determine whether the following ratios



b) cos 330° = Po\$

c) tan 150° = neg.

Example 2: Study the sin, cos, and tan functions.



Example 3: (-3,2) is a point on the terminal arm of the standard position angle θ .

Find the exact value of $\sin \theta$, $\cos \theta$, and $\tan \theta$.

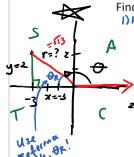
On the terminal arm of the standard position angle θ .

Unit circle

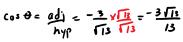
tan 0 = Sino

Cos

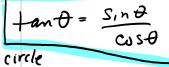
(-1,0)





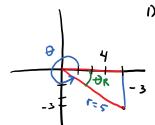


tant = off = = = = = = = 3



D. 360'

Example 4: (4, -3) is a point on the terminal arm of the standard position angle θ . Find the exact value of $\sin\theta$, $\cos\theta$, and $\tan\theta$.

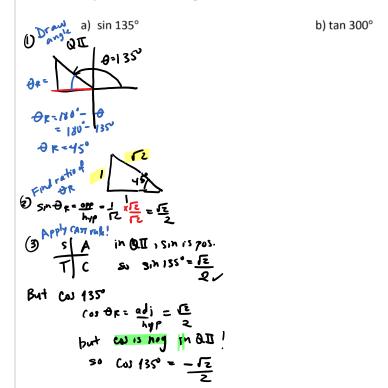


Example 5: Without using a calculator, find $\sin 0^{\circ}$, $\cos 0^{\circ}$, and $\tan 0^{\circ}$.

Example 6: Without using a calculator, find sin 90°, cos 90°, and tan 90°.

[Answer: 1, 0, undefined]

Example 7: Without using a calculator, determine:



Assignment: Complete **Trig Snowman** (**to be handed in!**) and **Sec 2.2** p. 96 # 1ac, 2 (use special ratios, not your calculator!), 3, 4abc, 6-8, 16.

Do not print:

solution:

o x, y, r are needed to find the exact sine, cosine, and tangent ratios. Use the Pythagorean Theorem.

$$r^{2} = x^{2} + y^{2}$$

 $r^{2} = (-3)^{2} + (2)^{2}$
 $r^{2} = 13$

r is always positive.

o Use the new definitions to find the trigonometric values.

Answer:
$$\sin \theta = \frac{2}{\sqrt{13}} = \frac{2\sqrt{13}}{13}$$
, $\cos \theta = -\frac{3}{\sqrt{13}} = -\frac{3\sqrt{13}}{13}$, $\tan \theta = -\frac{2}{3}$

solution:

- o Draw the terminal arm of 0°.
- Choose a point on the terminal arm.
- o Determine x, y, and r.

$$x = 1$$
, $y = 0$, $r = 1$

Use the new definitions.

$$x = 1$$
, $y = 0$, $r = 1$
 $\sin 0^\circ = \frac{0}{1}$, $\cos 0^\circ = \frac{1}{1}$, $\tan 0^\circ = \frac{0}{1}$

Answer: $\sin 0^\circ = 0$, $\cos 0^\circ = 1$, $\tan 0^\circ = 0$

Example: α is a fourth quadrant angle and $\cos \alpha = \frac{2}{7}$. Find the exact value of $\sin \alpha$.

Answer:
$$-\frac{3\sqrt{5}}{7}$$

Example: Without using a calculator, determine:

- a) sin 135°
- b) $\cos 210^{\circ}$
- c) tan 300°
- d) tan 225°