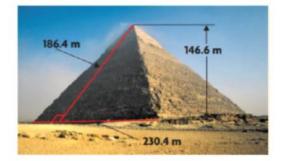

4 Scale Factors & 3D Objects


May 4, 2023 8:46 PM

$$\int_{1}^{1} \int_{1}^{1} \int_{1$$

Chapter 8.6: Scale Factors and 3D Objects (Part 2)

Example 1: An artist is building a glass replica of the Great Pyramid of Giza for a gallery. If she uses scale factor of 1:60, how much glass will she need to make the sculpture?

Example 2: Here are two oil spherical oil tanks. The smaller tank has a capacity of 1400 m^3 and the large tank has a capacity of 4725 m^3 .

- a) If both tanks are filled at the same rate, how many times longer will it take to fill the larger tank than the smaller tank?
- b) How many times greater is the radium of the larger tank than the radius of the smaller tank?

Scale Factor	Linear Scale Factor	Area Scale Factor	Volume Scale Factor
Symbol			
Formula			

Formulas We Might Need

Formulas		
Object	Surface Area and Volume	
rectangular prism h	SA = 2(lw + lh + wh) V = lwh	r F
right triangular prism h c l b	$SA = bh + l(a + b + c)$ $V = \frac{1}{2}bhl$	1
right cylinder	$SA = 2\pi r^2 + 2\pi rh$ $V = \pi r^2 h$	<u>-</u>

right pyramid h s	$SA = l^2 + 2ls$ $V = \frac{1}{3}l^2h$
right cone	$SA = \pi r^2 + \pi rs$ $V = \frac{1}{3}\pi r^2 h$
sphere	$SA = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$