5 Adding and Subtracting Rational Expressions part 2

## MODELLING BY ADDING AND SUBTRACTING RATIONAL <br> EXPRESSIONS


example: The current of a river is $c$ miles per hour. A boat's speed in still water is 12 miles per hour. Write a simplified expression that will represent the difference in the times required for this boat to travel 150 miles downriver and upriver.
$\frac{\text { boat's speed }(\text { mil hr })}{\text { in still water: } 12}$

- down (with current): $12+\mathrm{c}$
upi vier (against "):12-c

$t_{\text {upriver }}-t_{\text {downriver }}$
$=\frac{150}{12-c}-\frac{150}{12+c} \operatorname{LCD:(12-c)(12+c)}$
$t=\frac{d}{s}$

exercise: Ann and Bob drove separately the 300 km from Kamloops to Banff.
They left at the same time. Ann drove $x$ hours and arrived 1 hour before Bob. Write a simplified expression that represents how much faster Ann drove.



Diff. in sped:

$$
\begin{aligned}
& \text { Speed Ann } \text { - Speed Bub } \\
& \frac{300}{x}-\frac{300}{x+1} \\
& \text { LCD: } \quad x(x+1) \\
& \frac{300}{x} \cdot \frac{(x+1)}{(x+1)}-\frac{300}{(x+1)} \cdot \frac{x}{x} \\
& \frac{300 x+300-300 x}{x(x+1)} \\
& \text { Ann's speed was } \frac{300}{x(x+1)} \mathrm{km} / \mathrm{hr} \text { faster. } \\
& \begin{array}{c}
\text { If it took her what was her speed? } \\
\begin{array}{l}
3 \text { hows, what } \\
1 \\
\text { time }
\end{array} \frac{300}{x} \text { (see } \\
\text { above!) }
\end{array} \\
& \frac{300}{3}=100 \mathrm{~km} / \mathrm{hr} .
\end{aligned}
$$

## COMPLEX FRACTIONS

fractions inside of fractions!

Complex fractions are rational expressions with fractions in the numerator and/or the denominator.

Complex fractions can be simplified in two ways.

1. Rewrite the numerator and denominator as single fractions and divide them.
2. Multiply the numerator and denominator by the lowest common denominator of
the fractions within.
example: Evaluate $\frac{\frac{8}{7}+\frac{2}{5}}{3} ; \angle C D=5$
; simplify your answer.



Method 2 numerator t den uminator Malt. numerator t den amin
by that $\angle C D$ of 10 .

$$
\frac{\frac{40}{5}+\frac{2}{5}}{\frac{3}{10}-\frac{10}{10}}
$$

$$
\text { Keep, Krss,F/p! } \frac{\frac{42}{5}}{-\frac{7}{10}}
$$

$x$

$-12$

$$
\frac{10\left(8+\frac{2}{5}\right)}{10\left(\frac{3}{10}-1\right)}
$$

$$
\frac{10(8)+10\binom{2}{5}}{10\left(\frac{3}{10}\right)-10(1)}
$$

$\frac{80+4}{3-10}$
$\frac{84}{-7}$
$-12$

Ex 1: Simplify $\left.\left.\frac{\frac{8}{1}-\frac{2}{3}}{\frac{5}{6}+\frac{1}{1}}\right\}\right\} \begin{aligned} & \angle C D=3 \\ & \angle C D=6\end{aligned}$
Method $=6$
$\frac{\frac{8}{1} \times \frac{3}{3}-\frac{2}{3}}{\frac{5}{6}+\frac{1}{1} \times \frac{6}{6}}$
$\frac{\frac{24-2}{3}}{\frac{11}{6}}$
$\frac{22}{3} \div \frac{11}{6}$
$\frac{2 x^{2}}{3,} \times \frac{x^{2}}{11}$
4

Ex 2: $\quad$ Simplify $\left.\frac{\frac{1}{2}+x}{\frac{1}{3-x}}\right\} \angle C D=2$
$\frac{1}{2}$
$\frac{\frac{1}{2}+\frac{2}{2} x}{\frac{1}{3-x}}$
$=\frac{1+2 x}{2} \div \frac{1}{3-x}$

$$
=\frac{(1+2 x)}{2} \times \frac{(3-x)}{1}
$$

$$
=\frac{3-x+6 x-2 x^{2}}{2}
$$

$$
=\frac{2}{\frac{-2 x^{2}+5 x+3}{2}}
$$

$2(3-x)\left(\frac{1}{3-x}\right)$
$=\frac{3-x+(6-2 x)(x)}{2}$

$$
=\frac{3-x+6 x-2 x^{2}}{2}
$$

$$
=
$$

Assignment: Sec 6.3, p. 337 \#10, 12 (use hypotenuse $=\mathrm{c}$ in $a^{2}+b^{2}=c^{2}$ ), 14, 20b, optional: 16, 25-27.

