- A quadratic equation in one variable: standard form $a x^{2}+b x+c=0$.
- A quadratic inequality in one variable will have an inequality symbol ($<, \leq,>, \geq$) instead of $=$.
- A quadratic inequality in one variable can be solved graphically and algebraically.

SOLVING QUADRATIC INEQUALITIES IN ONE vARIABLE GRAPHICALLY

example: Consider the quadratic function $y=x^{2}-6 x+5 \quad \Rightarrow y=x^{2}-6 x+5$

1) Graph \rightarrow vertex fum? $y=x^{2}-6 x+5$ $\frac{6}{2}=\frac{-6}{2}=-3 \rightarrow(-3)^{2}=9$ $y=x^{2}-6 x+9-9+5$ $y=(x-3)^{2}-4$
L vertex $(3,-4)$
2) Find roots
$L_{x}-$ intercept

L Let $=0$ foslove

$$
x^{2}-6 x+5=0
$$

$$
\begin{gathered}
x-1)(x-5)=0 \\
x=1
\end{gathered}
$$

3) Solutim: if $\begin{aligned} & \text { or }>\rightarrow \text { look at } x \text {-values above } y \text {-avis } \\ & \text { if or }<\rightarrow \text { below } y \text { axis }\end{aligned}$

$$
\begin{aligned}
& \text { if }=" \text { where } y=0 \text { i-mperepts) }
\end{aligned}
$$

Solve each of the following:
a) $x^{2}-6 x+5=0$
b) $x^{2}-6 x+5>0$
c) $x^{2}-6 x+5 \geq 0$

d) $x^{2}-6 x+5<0$
$\{x \mid 1<x<5, x \in \mathbb{R}\}$
$\stackrel{+1}{4} \underset{5}{-\infty} x$
e) $x^{2}-6 x+5 \leq 0$
$\{x \mid 1 \leq x \leq 5, x \in \mathbb{R}\}$

SOLVING QUADRATIC INEQUALITIES IN ONE VARIABLE ALGEBRAICALLY

example: Solve the quadratic inequality $x^{2}-6 x+5<0$

- Find the Roots: Solve $x^{2}-6 x+5=0$ algebraically; the roots are 1 and 5 . Place the roots on a number line; use closed circles if these numbers are included in the solution and open circles if these numbers do not satisfy the
$\leqslant \geqslant<$ inequality. $<>$

- Roots and Test Points: These numbers break up the number line into regions. Test a value from within each region; if it satisfies the inequality, then all the numbers from that region will satisfy it as well.

$$
\leftrightarrow \text { shade betwenlts }
$$

Write the solution set by describing the x-values from all the regions that satisfy the quadratic inequality.

$$
\{x \mid 1<x<5, x \in \mathbb{R}\}
$$

$$
\begin{aligned}
& x^{2}-6 x+5<0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Test 3: } \quad \begin{array}{ll}
3^{2}-6(3)+5 & <0 \\
9-18+5 & <0
\end{array} \\
& -4<0 \text { TRUE } \therefore \text { is solutinnegim } \\
& \text { Test 6: } 6^{2}-6(6)+5<0 \\
& \begin{array}{l}
5<0 \text { FALSE } \rightarrow \text { dnn't stable }
\end{array}
\end{aligned}
$$

exercise: Solve graphically.
a) $x^{2} \leq 9$

b) $x^{2}+4 x>0$

$\{x \mid x<-4$ or $x>0, x \in \mathbb{R}\}$

$$
\frac{\text { algebraically }}{x^{2}+4 x=0}
$$

$$
x(x+4)=0
$$

$$
\therefore x=0 \text { or } x=-4
$$

$$
\begin{aligned}
\text { Test }-5:(-5)^{2}+4(-5) & >0 \\
25-20 & >0 \\
5 & >0 \text { TRuE So shade }
\end{aligned}
$$

$$
\text { Test }-1:(-1)^{2}+4(-1)>0
$$

$$
\text { Test 1: } 1^{2}+y(1)>0
$$

$$
5>0 \text { TRUE }
$$

exercise: Solve algebraically.
a) $x^{2}-16 x+63 \geq 0$
b) $x^{2}+2 x-1<0$
c) $x^{2}>0$
d) $x^{2}+4 x+5<0$

CUT OUT:
ORIf the inequality is in factored form, $(x-1)(x-5)<0$:
use Case Analysis: Test numbers from each region, but just determine if the factors are positive or negative to determine sign of the product.

Test 0:

Test 2:

Test 6:
a) $x^{2}-3 x-54 \geq 0 \quad$ Note - this factors very weird when you decompose the middle term! Not a typical factoring type so I replaced the question.
[Answer: $\{x \mid x \leq-6$ or $x \geq 9, x \in \mathrm{R}\}$] b) [Answer: $\{x \mid-1-\sqrt{2}<x<1-\sqrt{2}, x \in \mathrm{R}\}$]
c) $[$ Answer: $\{x \mid x \neq 0, x \in \mathrm{R}\}]$
d) $[$ Answer: $\phi]$

