SOLVING RADICAL EQUATIONS ALGEBRAICALLY- remember the steps!

$$
\sqrt{(x+5}=3
$$

$$
x+3 \geqslant 0
$$

- State restrictions on x because radicand must be $\geqslant 0$
- Isolate the square root.
- Square both sides of the equation. Remember: $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- Simplify and solve for x.
o Check against the restrictions. \}Are there extraneous roots?!
Check by plugging in
Example 1: The equations for the period of a pendulum is $T=2 \pi \sqrt{\frac{L}{32}}$ where T is the time in seconds and L is the length in feet. Find the engthof a pendulum of a clock that has a period of 4 seconds.

$$
\begin{aligned}
& T=4, L=? \\
& \frac{y_{1}}{2 \pi}=\frac{2 \pi}{2 \pi} \sqrt{\frac{L}{32}} \quad \text { Isolate "r } \\
& \left(\frac{2}{\pi}\right)^{2}=\left(\sqrt{\frac{L}{32}}\right)^{2} \quad \text { Square both ides. } \\
& 32 \times \frac{4}{\pi^{2}}=\frac{L}{32} \times 32 \\
& L=12.969 \\
& L=13 \\
& \text { The length is about } 13 \text { fec. }
\end{aligned}
$$

Assignment: Sec 5.3, p. 301 \#12, 13 or 14, 15, 16

