Math 9
Section 7.4 -Similar Triangles: Word Problems

Date: \qquad

Learning Outcomes Covered:

7F: I can use similar triangles to solve problems.
Example 1: In the similar triangles below, solve for the missing side x.

Example 2: $\triangle M N O$ is similar to $\triangle M P R$. Calculate the missing length, x.

Example 3: Using the information given in the diagram, determine the height of the actual tree.

Math 9
Date: \qquad
Section 7.4 - Similar Triangles: Word Problems
Example 4: Solve for the missing sides x and y if $\triangle A B C$ is similar to $\triangle D E C$.

$\left[\frac{5}{5} x=\frac{60}{5}\right.$

$$
\frac{3 y}{3}=\frac{12}{3}
$$

12
$x=12 \mathrm{unH}^{\prime}$
$y=4_{4 n}$
$5(6)+5 x=90$
$30+5 x=90$
-30
Example 5: A person who stands 180 cm tall casts a shadow 45 cm long. A nearby telephone pole casts a shadow 300 cm long at the same time of day. What is the height of the pole in metres?

$$
1 m=1001 \mathrm{~m}
$$

$x=12 m$

$$
\frac{45 x}{45}=\frac{300(180)}{45}
$$

$$
x=1200 \mathrm{~cm}
$$

The poles
12 m
high.

Example 6: A 6 m ladder is resting against a wall. The first rung fo the ladder is 30 cm from the bottom of the ladder and 24 cm vertically above the ground. How high up the wall does the ladder /adder reach?

$x=480 \mathrm{~m}$ $=4.8 \mathrm{~m}$

