

$$
\text { The Law of Cosines: } \quad \begin{array}{ll}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 b c \cos B \\
& e^{2}=a^{2}+b^{2}-2 a b \cos C
\end{array}
$$

Use the Cosine Law when given:

Case 1: two sides and the angle

between them ("the included angle")

Case 2: all 3 sides

"Sassy sides!"

Example 1: Daniel is about to take a shot at a field lacrosse net. He estimates his current position as shown. Based on his estimates, how wide is the net?

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
5 a^{2} & =6^{2}+5^{2}-2(6)(5) \cos 65^{\circ} \\
& =36+25-60 \cos 65^{\circ} \\
a^{2} & =35.6429 \\
a^{2} & =\sqrt{35 \cdot 64} 97 \text { fut } \\
a & =5.97
\end{aligned}
$$

Example 2: The diagram shows the plan for a roof, with support beam DE parallel to AB. The local building code requires the angle formed at the peak of a roof to fall within a range of 70° to 80° so that snow and ice will not build up. Will this plan pass the local building code?

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& 20^{2}=1 \underbrace{6} 5^{2}+10^{2}-2(19.5)(10) \cos x^{4} \\
& 400=-480.25-390 \cos B \\
&-480.25 \\
& \frac{-80.25}{-390}=\frac{-390}{-310} \cos B \\
& \cos B=0.2058 \\
& B\left.=\cos ^{-1} 10.2058\right) \\
& B=78.13^{\circ} \\
&=I+\text { will poss! }
\end{aligned}
$$

$$
20^{2}=\underbrace{19.5^{2}+10^{2}}-2(19.5)(10) \cos B A \quad D \quad b=20 \longrightarrow C
$$

Example 3: Two ships set sail from port P, heading in different directions. The first ship sails 7 km to R and the second ship sails 8 km to Q. If the
 distance between R and Q is 13 km , what is the angle between the directions of the two ships?

$$
p^{2}=q^{2}+r^{2}-2 q r \cos p
$$

$$
\left.13^{2}=7^{2}+8^{2}-2(7) / 8\right) \cos P
$$

$$
\begin{aligned}
169 & =113-112 \cos p \\
-113 & -113 \\
\frac{56}{-112} & =\frac{-112 \cos p}{-112} \\
-0.5= & \cos ^{p} p \\
p=\cos ^{-1}(-0.5) & =120^{\circ}
\end{aligned}
$$

Assignment: Sec 3.3, p. 138 \#8, 9, 10, 13, 12, 19,20

