6 Finding Factored Form from Equation given Graph;
Word Problems

Find the Factored Form Equation of a Quadratic Function Given its Graph
Example 1: Determine the EQUATION in FACTORED FORM $\begin{array}{r}y=a(x-r)(x-s) \\ \text {, of the }\end{array}$ function that defines each graph. Write each function in standard form.

Step 1: Look at the graph and identify the $x$-intercepts. Write these, respectively, as $r$ and $s$ in equation. (Note that because of the minus, you end up with the

- pposite sign!)

$$
\begin{array}{ll}
\text { Nu sign!) } \\
x-\text { intercept: : } x=-1 \\
x=3
\end{array}
$$

$$
\begin{aligned}
& x \text { Take opposiresigns! } x=3 \\
& \text { so } y=a(x+1) \text { ( }
\end{aligned}
$$



Step 2: Pick a point, $(x, y)$ from the graph. Plug these into the equation to solve for
a. Say you pick $(x, y)=(2,6)$

$$
\begin{aligned}
& \text { Solve for a by plugging } x+y \text { that we picked } \\
& \begin{array}{l}
y=a(x+1)(x-3) \\
6=a(2+1)(2-3) \\
6=a(3)(-1) \\
6=-3 a
\end{array} \quad \begin{array}{l}
\frac{6=\frac{-x}{-3} \frac{-1}{-3}}{}=a=a \\
a=-2
\end{array}
\end{aligned}
$$

Step 3: Write the equation, $\boldsymbol{y}=a(\boldsymbol{x}-r)(\boldsymbol{x}-s)$, but USE the numbers you found for $a, r$, and $s$. LEAVE the $y$ and $x$ as variables!!


## Find the Equation of a Quadratic Function Given its Graph

Example 2: Determine the EQUATION in FACTORED FORM, $y=a(x-r)(x-s)$, of the function that defines each graph. Write each function in standard form.

Step 1: Look at the graph and identify the $x$-intercepts. Write these.

Find the Equation of a Quadratic Function Given its Graph
Example 2: Determine the EQUATION in FACTORED FORM, $y=a(x-r)(x-s)$, of the function that defines each graph. Write each function in standard form.

Step 1: Look at the graph and identify the $x$-intercepts. Write these, respectively, as $r$ and $s$ in equation. (Note the minus sign!)

$$
\begin{gathered}
x=-1 \\
x=2 \\
y=a(x+1)(x-2)
\end{gathered}
$$

Step 2: Pick a point, $(x, y)$ from the graph. Plug these into the equation to solve for $a . \quad(x, y)=(3,2)$

$$
\begin{aligned}
& y=a(x+1)(x-2) \\
& 2=a(3+1)(3-2)
\end{aligned}
$$



$$
\begin{aligned}
& 2=a(4)(1) \\
& \frac{2}{4}=\frac{1}{4}
\end{aligned}
$$

$$
a=\frac{1}{2}
$$

Step 3: Write the equation, $y=a(x-r)(x-s)$, but USE the numbers you found for $a, r$, and $s$.

$$
y=\frac{1}{2}(x+1)(x-2)
$$

Example 3: Determine the EQUATION in FACTORED FORM, $y=a(x-r)(x-s)$, of the function having $x$-intercepts at -1 and 4 and $y$-intercept of 12 Take opp sim! $\frac{y=a(x+1)(x-4)}{12=a(0+1)(0-4)} \quad(0,12)$

## Solving Word Problems Given the Factored Form Equation of a Quadratic Function

Example 5: Burnaby South Secondary students decided to sell baseball caps to raise money for our school. The equation for the profit, $P$, they would make based on the $n$, the number of units sold is

$$
P=-0.5\left(x^{x}-400\right)\left(x^{x}-20\right)
$$


a) What are the breakeven points, ie., how many units would they need to sell break even (not lose any money)?

$$
\rightarrow \text { Profit }=0 \quad x \text {-interests : } \begin{aligned}
x & =400 \\
x & =20
\end{aligned}
$$


b) How many units would then need to sell to make a maximum profit?

$$
\begin{aligned}
\text { Take avg! } \frac{4 / 00+20}{2}=\frac{420}{2}=210 \text { we get max } \\
\text { profit if we sell } \\
210 \text { hats. }
\end{aligned}
$$

c) What would their maximum profit be?

$$
\text { Plug in } x=210
$$

$$
\begin{aligned}
x & =210 \\
P & =-0.5(x-400)(x-20) \\
& =-0.5(210-400)(210-20) \\
& =-0.5(190)(190) \\
& =\$ 18,050 \quad \begin{array}{l}
\text { Max profit is } \$ 18,000 \\
\text { if we sell } 210 \text { hats. }
\end{array}
\end{aligned}
$$

Example 6: A water park squirts water into the air. The height can be described by the equation where $t$ is the time in seconds:

$$
h=-2(t-2)(t-10)
$$

a) What are the zeros of this function? $\qquad$ 2 and $\qquad$ Show this on a rough sketch:


b) What do the zeros represent? They represent when water is at gro
c) What is the axis of symmetry?

$$
\begin{aligned}
& \text { Asymmetry? } \\
& \text { Avg! } \\
& \text { A } \\
& 2
\end{aligned} \frac{2+10}{2}=\frac{12}{2}=6
$$

d) Use the axis of symmetry to find the vertex.

$$
\begin{array}{rlrl}
\text { plug in find the vertex. } t=6: & h= & -2(t-2)(t-10) \\
& & \operatorname{ver} \operatorname{tax}(6,32) & = \\
& =32(6-2)(6-10)
\end{array}
$$

e) What is the maximum height that the water reaches? $\qquad$ $\max$
Example 7: A soccer ball is kicked into the air. The height can be described by the equation x is the vertical distance that the ball travels in seconds

$$
h=-x(x-14)
$$

a) What are the zeros of this function? $\qquad$ and $\qquad$ Show this on a rough sketch:
b) What is the axis of symmetry?
c) Use the axis of symmetry to find the vertex.
d) What is the maximum height that the ball reaches?

