6 Proofs that are Invalid

February 28, 2021 12:56 PM

Invalid proof: a proof that contains errors in reasoning or invalid assumptions
A proof is invalid if it has/uses:
A false assumption
Divides by zero
 Calculation error Reasoning error (faulty logic)
Circular reasoning
 Violates a p remise (true statement)
Example 1: Is this a valid proof? If not, find the error:
Thomas is a college student. All college students dislike studying.
Therefore, Thomas dislikes studying. FALSF Not a valid proof! FALSF Assumption! False Example 2: Kimberley claims she can prove that 2 = 3. Show that she has written an invalid proof.
Her proof:
x+y=z $x+y=z$
$3x - 2x + 3y - 2y = 3z - 2z \qquad \frac{-2 - 2}{2 + y - 2} = 0$
3x + 3y - 3z = 2x + 2y - 2z

FOM 11

Example 3: Is this a valid proof? If not, find the error in reasoning:

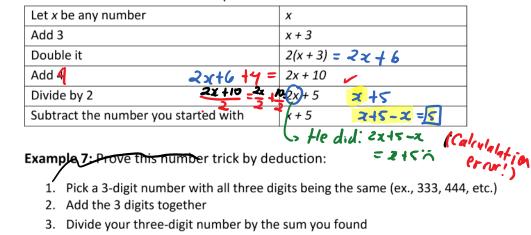
Kurt claims to have proven that 2 = 1. For each statement in his proof, determine if it is valid.

Statement	Reason	Valid?
$x = y$, where $x, y \neq 0$	Given	\checkmark
$x^2 = xy$	Multiply both sides by <i>x</i>	\checkmark
$x^2 - y^2 = xy - y^2$	Subtract y2 from both sides.	/
(x-y)(x+y) = y(x-y)	Factor out (x-y)	1
$\frac{(x-y)(x+y)}{x-y} = \frac{y(x-y)}{x-y}$	Divide both sides by (x-y) but x=y (given)	No! Canit
x + y = y	so x-y=0	Canit divideby 0!!_si
y + y = y	Substitute y for x since x = y	~
2y = y	Simplify	L
2 = 1	$\mathbf{p}_{\mathbf{v}}$ both sides by y	<i>v</i>

Example 4: Is this proof valid? If not, *what type of error* does it have? *Circle the error* and *correct* the proof.

2 = 2 4(2) = 4(1 + 1) 4(2) + 3 = 4(1 + 1) + 3 8 + 3 = 6 + 3 11 = 9 (al culation error) (b) = 10 (b) = 10 (c) = 10

Example 5: Mark claims that -3 = 3


Proof: Assume
$$-3 = 3$$

 $(-3)^2 = 3^2$

 $9 = 9$

False assumption!

(We Know $-3 \neq 3$).

Therefore: -3 = 3

Where did Mark go wrong?

Example 6: Evan created this number trick: *Choose any number. Add 3. Double it. Add 4. Divide by 2. Take away the number you started with.*

Each time he tries the trick, he ends up with a 5. His proof does not show this result. Where did the error occur in his proof?! Find and correct it!

4. Your answer is 37.

Assignment: Sec 1.5, p. 42# 1 (like Ex. 1 above), 2, 3, 5, 7, 10 (a classic!)

Tn

12

6

51