7 Completing the Square ($a=1$)
$x-3$ is a binomial.
$(x-3)^{2}$ is the square of the binomial.
When this square of a binomial is expanded, the result is $x^{2}-6 x+9$ which is a perfect square trinomial.

The algebra tile diagram for the above is shown to the right.

$$
(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}
$$

COMPLETING THE SQUARE
Completing the square is an algebraic process where a quadratic polynomial is rewritten so that it contains a perfect square trinomial so that this trinomial can be rewritten as the square of a binomial.

Exercise: Fill in the blank with the term that will produce a perfect square trinomial and then write the trinomial as a square.

Recall we can write quadratic functions in different forms:

- Standard form: $x^{2}+\boldsymbol{b} x+\boldsymbol{c} ; a, b, c \in \mathbb{R}, a \neq 0$ where a is the vertical stretch parameter and c is the y-intercept.
- Vertex form: $y=a(x-p)^{2}+q$, where vertex $=(p, q)$ and a is vertical stretch
$>$ To convert from standard form to vertex form, we need to "complete the square" - it is how we get $(x-p)^{2}$. It also finds q, the minimum or maximum value of the function, which occurs at $x=p$.
$>$ It is straightforward to complete the square when $a=1$. When $a \neq 1$, WATCH the BRACKETS!
CONVERTING from STANDARD FORM to VERTEX FORM
Example 1: Rewrite $y=x^{2}-6 x+7$ in vertex form by completing the square. (Note $a=1$ here).
Steps:
$y=a x^{2}+b x+c$

1. Get y alone on 1 side (if not already).
2. What is b ? $b=-6$
3. Divide b by 2 . This is the number $\left(\frac{b}{2}\right)$ that will go in the brackets. - 3
4. Now take that number and square it. This is the perfect square.

$$
\frac{b}{2}=\frac{-6}{2}=-2
$$

5. Copy the first 2 terms given (the $a x^{2}+b x$), then add the perfect square, then subtract the perfect square, then write the $3^{\text {rd }}$ term (c). You end up with 5 terms.

$$
y=\underbrace{x^{2}-6 x+9}-\underbrace{-9+7}
$$

6. Rewrite the perfect square trinomial (the $1^{\text {st }} 3$ terms in th step above) as a square. Add the $4^{\text {th }} \& 5^{\text {th }}$ terms to form $q=y=(x+-3)^{2}-2$
7. Done! What is the vertex? $(3,-2)$ Mig/max value, -2 , of the
function occurs at $x=3$?

Example 2: Rewrite $y=x^{2}-8 x+5$ in vertex form by completing the square.

1. Get y alone on 1 side (if not already).
2. What is b ? $b=-8$
3. Find $\frac{b}{2}$ (This is the number that will go in the brackets.) $\quad \frac{6}{2}=\frac{-8}{2}=-4$
4. Now take that number and square it. This is the perfect square.

5. Copy the first 2 terms given (the $a x^{2}+b x$), then add the perfect square, then subtract the perfect square, then write the $3^{\text {rd }}$ term (c). You end up with 5 terms.

6. Rewrite the perfect square trinomial (the $1^{\text {st }} 3$ terms in the step above) as a square. Add the $4^{\text {th }} \& 5^{\text {th }}$ terms to form q.
7. Vertex? $4,-11$ (Min) max value? -11 occurs at $x=-4$?

Assignment: Complete the Square for when $a=1$: Sec. 3.3, p. 192 \#1, 2, ba, 7a, Ba.

