7 Completing the Square (a=1)

October 5, 2021 12:59 PM

PRE-CALCULUS 11

Ch 3 – Day 7: COMPLETING THE SQUARE (a = 1)

x - 3 is a binomial.

 $(x-3)^2$ is the square of the binomial.

When this square of a binomial is expanded, the result is $x^2 - 6x + 9$ which is a *perfect square trinomial*.

The algebra tile diagram for the above is shown to the right.

$$(a+b)^2 = a^2 + 2ab + b^2$$

COMPLETING THE SQUARE

Completing the square is an algebraic process where a quadratic polynomial is rewritten so that it contains a *perfect square trinomial* so that this trinomial can be *rewritten as the square of a binomial*.

Exercise: Fill in the blank with the term that will produce a perfect square trinomial and then write the trinomial as a square.

Perfect Square Trinomial	Square of a Binomial
$x^{2} + 6x + 9$ $x^{2} + 2x + 4$ $x^{2} + 8x + 16$	$(x+3)^2$
$x^2 + 8x + 16$	$(x + 4)^2$
$x^2 - 10x + 25$	(x-5)2
$x^2 - 12x + 36$	$(x-6)^2$
$x^2 - 20x + 100$	$(x - \underline{IO})^2$
$x^2 + 16x + 64$	$(x + 2)^2$
$x^{2} + bx + \frac{b^{2}}{y} \left(\frac{b}{2}\right)^{2} = \frac{1}{2}$ $x^{2} - bx + \frac{1}{2}$	$(x + \frac{6}{2})^2$
$x^{2} - 1x + \frac{1}{2}$ $(\frac{1}{2})^{2} = \frac{1}{2}$	$(x + \frac{1}{2})^2$
$x^2 + 7x + 72.25$	$(x + 3.5)^2$
$\frac{4x^{2} + \frac{1}{3}x + c}{x^{2} + \frac{1}{3}x + \frac{1}{3}c}$	$(x + \underline{\underline{I}})^2$
	1 ⁻ Z

Recall we can write quadratic functions in different forms:

- Standard form: $ax^2 + bx + c$; $a, b, c \in \mathbb{R}$, $a \neq 0$ where a is the vertical stretch parameter and c is the y-intercept.
- Vertex form: $y = a(x-p)^2 + q$, where vertex = (p,q) and a is vertical stretch
- > To convert from standard form to vertex form, we need to "complete the square" it is how we get $(x-p)^2$. It also finds q, the **min**imum or **max**imum value of the function, which occurs at x=p.
- \blacktriangleright It is straightforward to complete the square when a=1. When $a\neq 1$, WATCH the BRACKETS!

CONVERTING from STANDARD FORM to VERTEX FORM

Example 1: Rewrite $y = x^2 - 6x + 7$ in vertex form by completing the square. (Note a = 1 here).

Steps:

- 1. Get y alone on 1 side (if not already).
- 2. What is *b*? b = -6
- 3. Divide $\frac{b}{b}$ by 2. This is the number $(\frac{b}{2})$ that will go in the brackets.

4. Now take that number and square it. This is the perfect square.

5. Copy the first 2 terms given (the $ax^2 +bx$), then add the perfect square, then subtract the perfect square, then write the 3rd term (c). You end up with 5 terms.

 $3^{2} = 9^{4}$ Perfect 394 are $y = \chi^{2} - 6\chi + 9 - 9 + 7$

- 6. Rewrite the perfect square trinomial (the 1st 3 terms in the step above) as a square. Add the 4th & 5th terms to form q. $y = (x + y)^2$
- 7. Done! What is the vertex? (3, -2) Mig/max value, (-2, -2) of the function occurs at x = 3?

Example 2: Rewrite $y = x^2 - 8x + 5$ in vertex form by completing the square.

- 1. Get y alone on 1 side (if not already).
- 2. What is *b*? $b = _{-}$
- 3. Find $\frac{b}{2}$ (This is the number that will go in the brackets.)

4. Now take that number and square it. This is the perfect square.

5. Copy the first 2 terms given (the $ax^2 + bx$), then add the perfect square, then subtract the perfect square, then write the 3^{rd} term (c). You end up with 5 terms.

- 6. Rewrite the perfect square trinomial (the 1st 3 terms in the step above) as a square. Add the 4^{th} & 5^{th} terms to form q.

7. Vertex? (4, -11) Min max value? _____ occurs at x = \frac{1}{2}? **Assignment**: Complete the Square for when a = 1: Sec. 3.3, p. 192 #1, 2, 6a, 7a, 8a.