7 Dividing Polynomials

November 7, 2021 5:03 PM

Math 9	Date:	
Section 5.5 Part 2 – Dividing Polynomials by a Constant		Page 1 of 4

Learning Goal 51: I can multiply a polynomial by a monomial.

How do we "DIVIDE" polynomials?

When dividing a polynomial by a constant, we can split the polynomial into <code>groups</code> according to the constant in the denominator.

Example 1: Divide $\frac{6x-9}{3}$ using algebra tiles. = 2x-3

Example 2: Divide
$$\frac{4x^2-6x}{2} = 2 \times 2 - 3x$$

Start with drawing out the tiles representing the numerator:

Then split them up into $\underline{}$ equal groups.

How do you divide a polynomial algebraically?

To divide a polynomial by a constant, divide each term of the polynomial by the constant. That is:

$$\frac{a+b+c}{d} = \frac{a}{d} + \frac{b}{d} + \frac{c}{d}$$
 Then simplify each term!

Date:	
	Page 2 of 4

Example 3: Divide $\frac{9x^2 + 12x + 6}{3}$ algebraically. **Example 4:** Divide $\frac{4m^2 - 2m + 8}{3}$ algebraically.

$$= \frac{4m^{2}-2m+8}{-2}$$

$$= \sqrt{-2m^{2}+m-4}$$

Example 5: Divide each of the following:

a)
$$\frac{20x+15}{5}$$

$$\frac{20x}{5} + \frac{15}{5}$$

$$= 4x + 3$$

$$\frac{20x+15}{5}$$

$$\frac{20x}{5} + \frac{15}{5}$$

$$= \boxed{9}$$

$$2 \times \frac{1}{2}$$

$$= \boxed{9}$$

c)
$$\frac{-40x}{-10}$$

$$\frac{10x^{2}-8}{2}$$

$$\frac{10x^{2}}{2} - \frac{y}{2}$$

$$= \sqrt{5 \times 1^{2} - y}$$

e)
$$\frac{14p-21}{-7}$$

$$= \frac{14p}{-7} - \frac{21}{-7}$$

$$= -2p + 3$$

f)
$$\frac{\frac{16m^2 - 24m + 12}{4}}{\frac{16m^2}{4} + \frac{-24m}{4} + \frac{12}{4}}$$
= $4m^2 - 6m + 3$

Example 6: The area of the following rectangle is $-28x^2 + 8x$. Determine the missing length if the

Section 5.5 Part 2 – Dividing Polynomials by a Constant

When **dividing** a polynomial by a monomial **with algebra tiles**, we reverse the process of multiplication.

The **solution** will be the polynomial on the missing side of the multiplication chart.

Example 7: Write a division statement for each set of algebra tiles. Then find the solution.

Example 8: Write the following as a single power:

a)
$$\frac{4^5}{4^3} = \frac{4^5}{4^3} = \frac{4^5}{5^4} = \frac{5^9}{5^4} = \frac{5^9}{5^4} = \frac{5^9}{5^4} = \frac{5^9}{5^4} = \frac{5^9}{6^4} = \frac{5^9}{6^4}$$

The same exponent rule holds true for variables. We can simplify as follows:

a)
$$\frac{x^5}{x^3} = x^2$$
 b) $\frac{y^9}{v^4} = y^5$ c) $\frac{m^5}{m^4} = m^9$

If you have the same amount of the variable in the numerator as in the denominator, just cancel out the variable!

Example 9: Simplify the following

a)
$$\frac{5x}{m} = 5$$
 b) $\frac{-7m}{m} = -7$ c) $\frac{1}{2} = 1$

Math 9

Section 5.5 Part 2 – Dividing Polynomials by a Constant

Date: Page 4 of 4

Example 10: Divide each of the following:

a)
$$\frac{6x^2 + 9x}{3x}$$

$$\frac{9x^2 + 15xy}{3x}$$

b)
$$\frac{9x^2 + 15xy}{3x}$$
 c) $\frac{4x^3 + 8x^2 - 6x}{2x}$

a)
$$\frac{6x + 9x}{3x}$$
 b) $\frac{9x + 13xy}{3x}$ c) $\frac{4x + 6x - 6x}{2x}$

$$= \frac{6x^{2} + 9x}{3x} + \frac{9x^{2}}{3x} + \frac{15x^{2}}{3x} - \frac{6x}{2x}$$

$$= \frac{3x}{3x} + \frac{15x^{2}}{3x} + \frac{15x^{2}}{2x} - \frac{6x}{2x}$$

$$= 3x + 5y + 2x^{2} + 4x - 3$$

$$= 2 \times +3$$

e)
$$\frac{50a^5b^7 + 40a^3b^4 - 20a^2b^3}{10ab^2}$$
 (Extending)

d)
$$\frac{-14x^{3} + 21x^{2} - 7x}{7x}$$

$$= \frac{-14x^{3}}{7x} + \frac{21x^{2}}{7x} - \frac{7x}{7x}$$

$$= \frac{-2x^{2} + 3x - 1}{7x}$$

$$\frac{50a^{5}b^{2}}{10ab^{2}} + \frac{40a^{3}b^{4}}{10ab^{2}} - \frac{20x^{2}b^{3}}{10ab^{2}}$$

$$= \left(5a^{4}b^{5} + 4a^{2}b^{2} - 2ab\right)$$