Math 9
Section 5.5 Part 2 - Dividing Polynomials by a Constant divide
Learning Goal 5I: I can a polynomial by a monomial.

How do we "DIVIDE" polynomials?
When dividing a polynomial by a constant, we can split the polynomial into groups according to the constant in the denominator.

Example 1: Divide $\frac{6 x-9}{3}$ using algebra tiles. $=2 x-3$
Start with drawing out the tiles representing the numerator:

Then divide the algebra tiles into \qquad 3 equal groups.

Example 2: Divide $\frac{4 x^{2}-6 x}{2}=2 x^{2}-3 x$
Start with drawing out the tiles representing the numerator:

Then split them up into 2 equal groups.

How do you divide a polynomial algebraically? To divide a polynomial by a constant, divide each term of the polynomial by the constant. That is:

$$
\frac{a+b+c}{d}=\frac{a}{d}+\frac{b}{d}+\frac{c}{d} \text { Then simplify each term! }
$$

Math 9
Date: \qquad
Section 5.5 Part 2 - Dividing Polynomials by a Constant

Example 3: Divide $\frac{9 x^{2}+12 x+6}{3}$ algebraically.

$$
\begin{aligned}
& \frac{3 x^{2}}{3}+\frac{12 x}{3}+\frac{6}{3} \\
& =3 x^{2}+4 x+2
\end{aligned}
$$

Example 4: Divide $\frac{4 m^{2}-2 m+8}{-2}$ algebraically.

$$
\begin{aligned}
& =\frac{4 m^{2}}{-2}-\frac{2 m}{-2} \frac{+8}{-2} \\
& =-2 m^{2}+m-4
\end{aligned}
$$

Example 5: Divide each of the following:
a)

$$
\begin{aligned}
& \frac{20 x+15}{5} \\
& \frac{20 x}{5}+\frac{15}{5} \\
= & 4 x+3
\end{aligned}
$$

e) $\frac{14 p-21}{-7}$

$$
\begin{aligned}
& =\frac{14 p}{-7}-\frac{21}{-7} \\
& =-2 p+3
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{4}{3} & \text { c) } \frac{-40 x}{-10} \\
= & y x^{2}
\end{aligned}
$$

f) $\frac{16 m^{2}-24 m+12}{4}$

$$
\begin{aligned}
& \frac{16 m^{2}}{4}+\frac{-24 m}{4}+\frac{12}{4} \\
= & 4 m^{2}-6 m+3
\end{aligned}
$$

Example 6: The area of the following rectangle is $-28 x^{2}+8 x$. Determine the missing length if the width is 4.

$A=l \times w$

$$
\begin{aligned}
& f= l \\
& l=\frac{-A}{w} \\
&=\frac{-28 x^{2}+8 x}{y} \\
&=-\frac{-7 x^{2}}{4}+\frac{8 x}{y} \\
& \text { The missing length is }-7 x^{2}+2 x
\end{aligned}
$$

Math 9 \qquad
Section 5.5 Part 2 - Dividing Polynomials by a
When dividing a polynomial by a monomial with algebra tiles, we reverse the process of multiplication.
The solution will be the polynomial on the missing side of the multiplication chart.
Example 7: Write a division statement for each set of algebra tiles. Then find the solution.

Example 8: Write the following as a single power:
a) $\begin{aligned} \frac{4^{5}}{4^{3}} & =Y^{5-3}=4^{2} \\ & =\frac{4 \cdot 5 \cdot 4 \cdot 4 \cdot 4}{4 \cdot 4 \cdot 4}=4^{2}\end{aligned}$
b) $\frac{5^{9}}{5^{4}}=5^{5}$
c) $\frac{6^{5}}{6^{2}}=6^{5-1}=6^{4}$

The same exponent rule holds true for variables. We can simplify as follows:
a) $\frac{x^{5}}{x^{3}}=x^{2}$
b) $\frac{y^{9}}{y^{4}}=\boldsymbol{y}^{5}$
c) $\frac{m^{5}}{m^{1}}=m^{y}$

If you have the same amount of the variable in the numerator as in the denominator, just cancel out the variable!

Example 9: Simplify the following
a) $\frac{5 x}{x}=5$
b) $\frac{-7 m}{m}=-7$
c) $\frac{x}{x}=1$

Math 9
Section 5.5 Part 2 - Dividing Polynomials by a Constant

Date: \qquad

Example 10: Divide each of the following:
Page 4 of 4
b) $\frac{9 x^{2}+15 x y}{3 x}$
a) $\frac{6 x^{2}+9 x}{3 x}$

$$
=\frac{6 x^{2}}{3 x}+\frac{9 x}{3 x}
$$

$$
=2 x+3
$$

c) $\frac{4 x^{3}+8 x^{2}-6 x}{2 x}$

$$
\begin{aligned}
& \frac{4 x^{3}}{2 x}+\frac{8 x^{2}}{2 x}-\frac{6 x}{2 x} \\
& 2 x^{2}+4 x-3
\end{aligned}
$$

d) $\frac{-14 x^{3}+21 x^{2}-7 x}{7 x}$
e) $\frac{50 a^{5} b^{7}+40 a^{3} b^{4}-20 a^{2} b^{3}}{10 a b^{2}}$ (Extending)

$$
\begin{aligned}
& =\frac{-14 x^{3}}{7 x}+\frac{21 x^{2}}{7 x}-\frac{7 x}{7 x} \\
& =-2 x^{2}+3 x-1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{50 a^{5} b^{7}}{10 a b^{2}}+\frac{40 a^{3} b^{4}}{10 a^{1} b^{2}}-\frac{20 a^{2} b^{3}}{10 a^{2} b^{2}} \\
= & 5 a^{4} b^{5}+4 a^{2} b^{2}-2 a b
\end{aligned}
$$

