- **5. a)** The graph of y = 4f(x) is a vertical stretch by a factor of 4 of the graph of y = f(x). $(x, y) \rightarrow (x, 4y)$
 - **b)** The graph of y = f(3x) is a horizontal stretch by a factor of $\frac{1}{3}$ of the graph of y = f(x). $(x, y) \rightarrow \left(\frac{x}{3}, y\right)$
 - c) The graph of y = -f(x) is a reflection in the x-axis of the graph of y = f(x). $(x, y) \rightarrow (x, -y)$
 - **d)** The graph of y = f(-x) is a reflection in the y-axis of the graph of y = f(x). $(x, y) \rightarrow (-x, y)$
- **6. a)** domain $\{x \mid -6 \le x \le 6, x \in \mathbb{R}\}$, range $\{y \mid -8 \le y \le 8, y \in R\}$
 - b) The vertical stretch affects the range by increasing it by the stretch factor of 2.
- 7. a) The graph of g(x) is a vertical stretch by a factor of 4 of the graph of f(x). y = 4f(x)
 - **b)** The graph of g(x) is a reflection in the x-axis of the graph of f(x). y = -f(x)
 - c) The graph of g(x) is a horizontal stretch by a factor of $\frac{1}{3}$ of the graph of f(x). y = f(3x)
 - d) The graph of g(x) is a reflection in the y-axis of the graph of f(x). y = f(-x)

- horizontally stretched by a factor of $\frac{1}{4}$
 - b) horizontally stretched by a factor of 4
 - vertically stretched by a factor of $\frac{1}{2}$
 - vertically stretched by a factor of 4
 - horizontally stretched by a factor of $\frac{1}{2}$ and reflected in the y-axis
 - vertically stretched by a factor of 3 and reflected in the x-axis

c) They are both incorrect. It does not matter in which order you proceed.

- **b)** Both the functions are reflections of the base function in the t-axis. The object falling on Earth is stretched vertically more than the object falling on the moon.
- **12.** Example: When the graph of y = f(x) is transformed to the graph of y = f(bx), it undergoes a horizontal stretch about the y-axis by a factor of $\frac{1}{|b|}$ and only the *x*-coordinates are affected. When the graph of y = f(x)is transformed to the graph of y = af(x), it undergoes a vertical stretch about the x-axis by a factor of |a| and only the y-coordinates are affected.

b) As the drag factor decreases. the length of the skid mark increases for the same speed.

- **14.** a) x = -4, x = 3
- x = 4, x = -3
- c) x = -8, x = 6
- **d)** x = -2, x = 1.5
- **b)** III
- c) IV d) IV
- 15. a) 16. a)

- **C1** Example: When the input values for g(x) are b times the input values for f(x), the scale factor must be $\frac{1}{h}$ for the same output values. $g(x) = f\left(\frac{1}{h}(bx)\right) = f(x)$
- C2 Examples:
 - a) a vertical stretch or a reflection in the x-axis
 - a horizontal stretch or a reflection in the y-axis

3	f(x)	g(x)	Transformation
	(5, 6)	(5, -6)	reflection in the x-axis
	(4, 8)	(-4, 8)	reflection in the y-axis
	(2, 3)	(2, 12)	vertical stretch by a factor of 4
	(4, -12)	(2, -6)	horizontal stretch by a factor of $\frac{1}{2}$ and vertical stretch by a factor of $\frac{1}{2}$