Inverse of a Relation

A relation is a mapping from one set onto another set.

Let A and B be sets. The inverse of a relations $R: a \rightarrow b$ where $a \in A$ and $b \in B$ is a relation $R^{-1}: b \rightarrow a$ where $b \in B$ and $\in A$.

Example 1

Graph the relation $y=2 x-3$ and then graph the inverse of this relation.

What do you notice?

The graph of an inverse of a function $y=f(x)$ is a \qquad in the $y=x$ axis. In mapping notation this is: $(x, y) \rightarrow(y, x)$.

Example 2

Graph the function $f(x)=x^{2}$ and its inverse on the same graph. State the domain and range the function and its inverse. Is the inverse a function? How can we restrict the domain of $f(x)=x^{2}$ so that its inverse is a function?

The \qquad is a way to determine whether or not the inverse of a function, will also be a function.

When the inverse of a function $f(x)$ is itself a function, we may denote the inverse by $f^{-1}(x)$. Note that this is not an exponent. $f^{-1}(x) \neq \frac{1}{f(x)}$.

Example 3

Determine the equation of the inverse of $f(x)=\frac{1}{2} x-1$.

Example 4

Given the function $f(x)=4 x-3$ determine the value of $f^{-1}(2)$.

