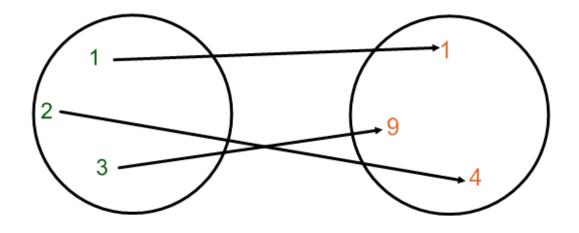
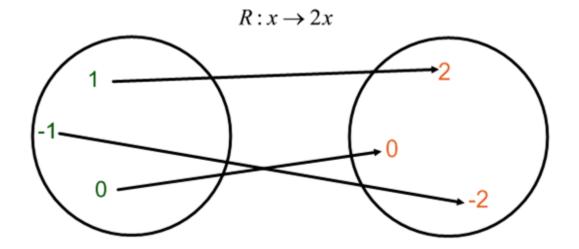
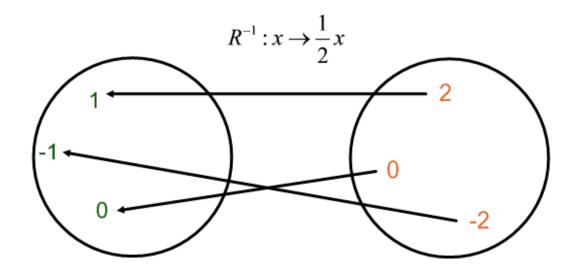
Inverse of a Relation

A relation is a mapping from one set onto another set.



Let *A* and *B* be sets. The inverse of a relations $R: a \to b$ where $a \in A$ and $b \in B$ is a relation $R^{-1}: b \to a$ where $b \in B$ and $\in A$.

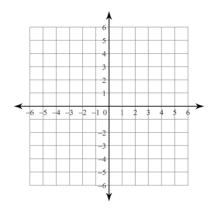




Example 1

Graph the relation y = 2x - 3 and then graph the inverse of this relation.

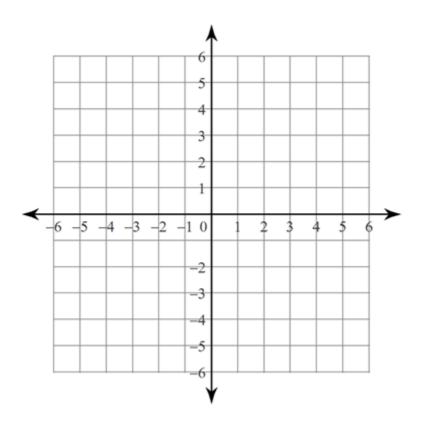
What do you notice?



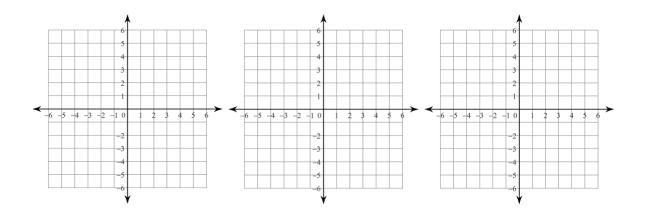
The graph of an inverse of a function y = f(x) is a _____ in the y = x axis. In mapping notation this is: $(x, y) \rightarrow (y, x)$.

Example 2

Graph the function $f(x) = x^2$ and its inverse on the same graph. State the domain and range the function and its inverse. Is the inverse a function? How can we restrict the domain of $f(x) = x^2$ so that its inverse is a function?



The ______ is a way to determine whether or not the inverse of a function, will also be a function.



When the inverse of a function f(x) is itself a function, we may denote the inverse by $f^{-1}(x)$. Note that this is not an exponent. $f^{-1}(x) \neq \frac{1}{f(x)}$.

Example 3

Determine the equation of the inverse of $f(x) = \frac{1}{2}x - 1$.

Example 4

Given the function f(x) = 4x - 3 determine the value of $f^{-1}(2)$.