Reflections and Stretches

A \qquad is a transformation that flips an image over a . A reflection results in a \qquad
of the original shape.

Draw a graph of $y=x^{2}+2$ and $y=-f(x)$ on the same graph. What do you notice?

Draw a graph of $y=(x-1)^{2}$ and $y=f(-x)$ on the same graph. What do you notice?

In general $y=-f(x)$ is a reflection in the x-axis of the graph of $y=f(x)$ and $y=f(-x)$ is a reflection in the y-axis of the graph of $y=f(x)$.

An \qquad , is a point on a graph that does not change position after the graph undergoes a transformation.

Example

Consider the following graph.

Sketch the reflection of this graph in the x-axis. State any invariant points.

Stretches

A \qquad is a transformation that changes the shape of a graph, but not the orientation.

Draw a graph of $f(x)=x^{2}$ and $2 f(x)$ on the same graph. What do you notice?

Draw a graph of $f(x)=x^{2}$ and $\frac{1}{2} f(x)$ on the same graph. What do you notice?

In general $y=a f(x)$ is a vertical stretch about the x -axis of the graph of the function $f(x)$ by a factor of $|a|$. If $a<0$, then the graph is also reflected in the x-axis.

Draw a graph of $f(x)=x^{2}$ and $f(2 x)$ on the same graph. What do you notice?

Draw a graph of $f(x)=x^{2}$ and $f\left(\frac{1}{2} x\right)$ on the same graph. What do you notice?

In general $y=f(b x)$ is a horizontal stretch about the y-axis of the graph of the function $y=f(x)$ by a factor of $\frac{1}{|b|^{.}}$. If $b<0$, then the graph is also reflected in the y-axis.

Example 1

The graph of the function $y=|x|$ has been stretched about the x -axis by a factor of 2 . Write the equation of the transformed function, if the range of the transformed function is $\{y \mid y \leq 0, y \in R\}$.

Given the graph of $y=f(x)$, sketch the rpah of the transformed function $y=f\left(-\frac{1}{2} x\right)$.

