Square Roots of a Function

Given a function _____, the square root of this function is ______ is only defined for ______.

Example 1

Given f(x) = 2x + 1, use tables of values to graph the functions y = f(x)and $y = \sqrt{f(x)}$.

Where do the invariant points occur?

Relative Locations of y = f(x) and $y = \sqrt{f(x)}$.

The domain of ______ consists only of values in the domain of ______ for which ______.

The range of ______ consists of the square roots of the values in the range of ______ for which is ______ defined.

Value of $f(x)$	Relative Location of the Graph of $y = \sqrt{f(x)}$
f(x) < 0	
f(x) = 0	
0 < f(x) < 1	
f(x) = 1	
f(x) > 1	

Example 2

Identify and compare the domains and ranges of $y = -2(x - 3)^2 + 8$ and = $\sqrt{-2(x - 3)^2 + 8}$.

Example 3

Using the graph of y = f(x) below, graph the function $y = \sqrt{f(x)}$.

