Square Roots of a Function

Given a function \qquad , the square root of this function is
\qquad . \qquad is only defined for \qquad .

Example 1

Given $f(x)=2 x+1$, use tables of values to graph the functions $y=f(x)$ and $y=\sqrt{f(x)}$.

Where do the invariant points occur?

Relative Locations of $y=f(x)$ and $y=\sqrt{f(x)}$.

The domain of \qquad consists only of values in the domain of
\qquad for which \qquad .

The range of \qquad consists of the square roots of the values in the range of \qquad for which is \qquad defined.

Value of $f(x)$	Relative Location of the Graph of $y=\sqrt{f(x)}$
$f(x)<0$	
$f(x)=0$	
$0<f(x)<1$	
$f(x)=1$	
$f(x)>1$	

Example 2

Identify and compare the domains and ranges of $y=-2(x-3)^{2}+8$ and $=\sqrt{-2(x-3)^{2}+8}$.

Example 3

Using the graph of $y=f(x)$ below, graph the function $y=\sqrt{f(x)}$.

